
CHAPTER 18

Program EPF Calling Sequence

The main entrypoint of a program EPF is invoked by the command
environment with a standard calling sequence. This calling sequence
consists of five arguments:

1. The command line supplied by the invoker

2. The command status set by the invoked program to indicate its
level of success to the invoker

3. Information on the command processing state supplied by the
invoker

4. A flag indicating whether the invoker desires a return value —
that is, whether the invoker is treating the invoked program as
a command function

5. A pointer set by the invoked program to point to the returned
value structure

The complete calling sequence is illustrated near the end of this
chapter; however, very few programs need to use all of the information
and arguments provided by the command environment. In fact, most
programs need accept only two or fewer arguments.

The invoker is the EPF$INVK subroutine, which is called either directly
by user programs, by the EPF$RUN subroutine, or by the CP$ subroutine.
EPF$RUN is, itself, called directly by user programs. CP$ is also
callable by user programs, and is called by FRIMDS to execute a
command.

First Edition 18-1 Preliminary Release

Advanced Programmer's Guide

C
TYPES OF CRLLING SEQUENCES

There are five types of program EPF calling sequences, with various
levels of complexity. They are:

1. The program calling sequence, which takes no command line and
which returns no information

2. The command calling sequence, which accepts a command line and
which returns a severity code

3. The command function calling sequence, which accepts a command
line and which returns both a severity code and a pointer to
the returned function value

4. The detailed command calling sequence, which is an extended
form of the command calling sequence in that it also accepts
detailed command processing information

5. The complete calling sequence, which combines the command
function calling sequence with the detailed command calling
sequence

The remainder of this chapter describes each of tiie above calling
sequences.

Except for the program calling sequence, the EPF$INVK subroutine treats
all program EPFs the same in that it passes all five arguments to the
main subroutine of a program EPF. For the program calling sequence,
the EPF$INVK subroutine detects that the main subroutine of the program
EPF it will invoke accepts no arguments — it does this by examining
the main subroutine's ECB — and it therefore invokes the main
subroutine with no arguments.

The only differences between the calling sequences is how many
arguments the main subroutine has been designed to accept. If it
accepts fewer than five arguments, then the extra arguments passed to
it are ignored by the main subroutine. (The PCL instruction, which
performs procedure calls on Prime systems, handles this situation
properly.) In fact, a main subroutine may accept five arguments but
choose to ignore some or all of them.

The different calling sequences are therefore described only to
simplify the construction of a main program. You should decide what
kind of program you are writing by looking at the descriptions of the
functionality each calling sequence provides throughout the rest of
this chapter, and then choose the calling sequence that best suits your
program.

Preliminary Release 18-2 First Edition

Program EPF Calling Sequence

PROGRAM CALLING SEQUENCE

The program calling sequence is the simplest calling sequence because
it accepts no arguments. Any command line passed to such a program is
ignored; no severity code is returned, so a severity code of 0 is
assumed by the invoker; if the program is invoked as a command
function, no pointer to the returned value is returned.

The calling sequence is not illustrated, because it consists of no
input or output arguments.

A program whose main subroutine accepts no arguments may use the SETRC$
subroutine, described in the Subroutines Reference Guide, to return a
severity code, even though it does not accept the severity code
argument in its main subroutine. This feature is provided to allow the
conversion to an EPP of an existing static-mode program that uses
SETJIC? to be as easy as possible.

COMMAND CALLING SEQUENCE

The command calling sequence is used for programs that accept command
line arguments and options and that return a severity code.

Arguments in the Command Calling Sequence

The command calling sequence is the simplest calling sequence that
accepts arguments. It accepts two arguments:

1. The command line, an input-only argument

2. The severity code, an output-only argument

If a program that accepts only these two arguments is invoked as a
command function, no pointer to the returned value is returned.

Figure 18-1 illustrates the command calling sequence, where EPF is the
main subroutine of the program EPF.

Command Line: The length of the command line can be a maximum of
32,766 characters. Your program may limit the length to any value it
chooses. Practical limits depend on the source of the command line.
For example, the limit on the length of a command line entered by an
interactive user or from a command input file is 160 characters;
whereas the limit on the length of a command line in a CPL program is
1024 characters.

If your program is passed a command line longer than it can handle, it
should use the error code E$TRCL as both a severity code and as an
error code to ERRPR$ to indicate that the command line has been

First Edition 18-3 Preliminary Release

Advanced Programmer's Guide

CjxAflnanJ CciHtn^ S^vieAce

STRING;

(

E f F Lce»/v\/̂ aA<i-l*»i\e S^Verl-^- code)

1
HALF

"* 0 : A'o £rror

Command Calling Sequence
Figure 18-1

Preliminary Release 18-4 First Edition

Program EPP Calling Sequence

truncated, if your program aborts due to this condition, then a
truncated command line is an error; therefore, your program should
return E^ERCL, a positive value, as the severity code. If your program
continues processing, but uses a truncated form of the command line,
your program should return -E$ERCL, a negative value, as the severity
code (unless a positive error code is required for other reasons) to
indicate a warning condition.

In PL1/G, you can use the LENGTH built-in function to check whether the
length of the command line is greater than your program supports, even
if you have declared the command line to be the maximum size your
program supports. In FORTRAN and other languages, you can compare tiie
first halfword of the command line argument, which is the actual length
of the command line, to the maximum length your program supports.

If your program does not accept a null command line, it should use the
E$NCDM to indicate that it has been passed a null command line. In
addition, you may wish to have your program display usage information
when passed a null command line; this is what many Prime-supplied
programs, such as SPOOL and JOB, do with a null command line. Even if
your program does display usage information, it should still return
E$NO0M, a positive value, as the severity code to indicate an error.

Other error codes your program may wish to return as either positive
values (to indicate errors) or as negative values (to indicate
warnings), and which your program may also wish to use when calling
ERRPR$ to display warning messages, are:

Error Code Used For

E$BPAR

E$BNAM

E$NMLG

E$ITRE

E$CMND

Invalid numeric arguments, arguments where a
number was expected but some other argument was
supplied.

Invalid file system objectname arguments.

Overly long names, such as a file system
objectname that is more than 32 characters long.

Invalid pathnames.

Invalid command formats, such as use of an option
when no options are allowed, or use of command
line arguments when no command line arguments are
allowed.

E$BARG

E$IVCM

Invalid arguments, such as use of an unrecognized
option, or use of a name or number when an option
was expected.

Invalid usage of a command, such as a combination
of options and arguments that is not permitted or
that does not make sense.

First Edition 18-5 Preliminary Release

Advanced Programmer's Guide

E$MISA Missing arguments, such as when a number, name,
or option that is required is not provided on the
command line.

All standard PRIMDS error codes, including those shown above, are
listed along with their numeric equivalents, messages, and
descriptions, in Appendix B.

Severity Code; Your program should set the severity code to an
appropriate value before returning from its main subroutine. As
indicated, the meaning of a severity code depends on whether it is
negative, zero, or positive. The magnitude of the severity code is not
defined by PRIMDS; however, your program should have documentation
that describes the different severity codes it may return and what they
mean. Typically, standard PRIMDS error codes, listed in Appendix B,
are used for severity codes? to indicate warning conditions, the
negated values of standard PRIMDS error codes are often used.

COMMfiND FUNCTION CALLING SEQUENCE

The command function calling sequence is used when the program expects
to be invoked as a command function. It may or may not expect command
line arguments and options, and it may or may not return a severity
code. Such a program returns a pointer to a structure that contains
the returned value, a text string, that can be substituted for the
invocation of the program as a command function on a command line.

The steps a command function performs are:

1. Accept five arguments in the main entrypoint calling sequence

2. Determine the string value to be returned to the calling
program

3. Allocate memory for the string value to be returned

4. Copy the string value into the allocated memory

5. Store the pointer to the allocated memory into the pointer
passed in the calling sequence of the main entrypoint

6. Return to the calling program

Step 1, accepting five arguments in the main entrypoint, is described
below in the section entitled Arguments in the Command Function Calling
Sequence. Step 2, determining the value to be returned, depends on the
purpose of your program. Steps 3 and 4 are typically combined into one
step by calling the ALS$RA subroutine, described below in the section
entitled The ALS$RA Subroutine. Alternatively, they may be performed
separately by calling the ALC$RA subroutine, described below in the
section entitled The ALC$RA Subroutine, and then by copying the string

Preliminary Release 18-6 First Edition

Program EPP Calling Sequence

value afterwards. Typically, only programs written in PL1/G and PMA
perform Steps 3 and 4 separately.

Step 5 is often performed implicitly during Step 3 if ALS$FA or ALC$RA
is passed the same variable accepted in the calling sequence of the
main entrypoint; otherwise, your command function must explicitly set
the rtn-fcn-ptr variable passed to it in the calling sequence of the
main entrypoint so that it points to the structure allocated by ALS$RA
or ALC$RA.

Step 6 is performed in the same way as for other types of programs.
Your program should set the returned severity code to an appropriate
value before returning.

After the next three sections, a section entitled Sample Command
Functions presents two simple sample command functions.

Arguments in the Command Function Calling Sequence

The main subroutine of a command function accepts five arguments:

1. The command line, an input ̂only argument

2. The severity code, an output-only argument

3. An input-only argument that may be ignored by most command
functions

4. The invocation form bit, an input-only argument

5. The returned value pointer, an output-only argument

Figure 18-2 illustrates the command calling sequence, where EPF is the
main subroutine of the program EPF.

Command Line; See the section earlier in this chapter entitled COMMAND
CALLING SEQUENCE for information on the command line. That information
applies to command functions as well.

Severity Code; See the section earlier in this chapter entitled
CDMMAND CALLING SEQUENCE for information on the severity code. That
information applies to command functions as well.

Ignored: The information passed to a program in the third argument may
be ignored by most command functions. It is described in the next
section, entitled DETAILED COMMAND CALLING SEQUENCE.

Invocation Form: The form of program invocation is a bit that

First Edition 18-7 Preliminary Release

Advanced Programmer's Guide

Gmma/vJ hrnc&*\ C*llW S ^ u t n c t
C

STKlNQ
1

SIT

Wot* &**£•* CkU
I — EG

1 1 N

i
/An

1
ft: W» £rror

>0' £rr«r

Command Function Calling Sequence
Figure 18-2

Preliminary Release 18-8 First Edition

Program EPF Calling Sequence

indicates whether the program is being invoked as a command function or r as a normal command. When set (1) f function-call indicates that the
invoker expects the program to set rtn-fcn-ptr to point to a structure
containing the returned value of the function. When reset (0),
function-call indicates that the invoker does not expect the program to
set rtn-fcn-ptr at all, and that in fact the invoker may not have
supplied the rtn-fcn-ptr argument.

Caution

Under no circumstances should your program set rtn-fcn-ptr when
function-call i s reset (0), nor should your program allocate
storage for the returned value. When function-call i s reset
(0), the fifth argument, rtn-fcn-ptr, may not be passed to your
program, and any attempt that your program makes to set i t may
therefore result in a POINTER_FAULT$ error condition being
signaled. If the fifth argument i s passed, but function-call
i s reset (0), then your program may succeed at setting
rtn-fcn-ptr, but the invoking program will not expect i t to
point to the returned structure, and will therefore not
deallocate the memory used by the structure.

Returned Value Pointer: If your program has been invoked with the

r function-call bit of the calling sequence set (1), then the invoking

program expects your program to return a pointer to a structure that
contains the returned value. The returned value i s a text string
0-32766 characters in length. The structure contains a version number
(currently 0) as a HALF INT value and the returned value as a <=32766
STRING value.
Your program must return a pointer returned by one of the two
allocation subroutines described below, ALS$RA or ALC$RA, in
rtn-fcn-ptr. The calling program will use the FRE$RA subroutine,
described in Chapter 19, to free the storage allocated by ALS$RA or
ALCSRA, by passing to FRE$RA the pointer your program returns in
rtn-fcn-ptr.

Caution

If your program does not use ALS$RA or ALC$RA to determine the
rtn-fcn-ptr pointer, instead using a pointer constructed by
other means, then when the calling program calls FRE$RA with
the returned pointer, a fatal error will occur.

The ALS$RA Subroutine

The ALS$RA subroutine allocates sufficient memory to hold the supplied

First Edition 18-9 Preliminary Release

Advanced Programmer's Guide

string value, copies the string value into the allocated memory, and
returns the pointer to the allocated memory for use by the program that
invoked the command function. The calling sequence for AI£$RA i s
illustrated in Figure 18-3.

Your program passes the string value to be returned in value and i t s
size, in characters, in value-size. ALS$RA allocates sufficient memory
(at least (value-size+5772 halfwords) to hold the string value, sets
the first halfword of the allocated memory to 0 to indicate a version 0
returned value structure, stores the length of the string in value-size
into the second halfword of the allocated memory, copies the string in
value into the allocated memory starting with the third halfword, and
returns a pointer to the first halfword of the allocated memory in
rtn-fcn-ptr.

After calling this subroutine, a l l your program need do i s ensure that
the pointer returned by ALS$RA i s returned by the main entrypoint of
your program to the calling program by storing i t into the rtn-f cn-ptr
argument of the main entrypoint of your program. Then, your program
simply returns to i t s invoker. The invoking program i s responsible for
deallocating the memory allocated by ALS$RA.

The ALC$RA Subroutine

The ALC$RA subroutine i s similar to the ALS$RA subroutine, except that (
i t does not copy the string value into the allocated memory. It leaves
this task to your program, the command function.

The ALC$RA subroutine allocates sufficient memory to hold a string
value of the specified length and returns the pointer to the allocated
memory for use by your program, the command function. The calling
sequence for ALC$FA i s illustrated in Figure 18-4.

Your program passes the number of halfwords to be allocated in /
halfwords. This value should be at least (value-size+5)/2, where \
value-size i s the length of the string value to be returned. ALC$RA
allocates the requested number of halfwords to hold the string value,
and returns a pointer to the f irst halfword of the allocated memory in
rtn-f cn-ptr.

After calling this subroutine, your program must set the f irst halfword
of the allocated memory to 0 to indicate a version 0 returned value
structure, set the second halfword of the allocated memory to the
length of the string value in characters, then copy the string value
into the allocated memory starting at the third halfword of the
allocated memory. Because your program must use the rtn-fcn-ptr
pointer to perform these tasks, only programs written in PL1/G and PMA
typically use this interface.

After copying the string value into the allocated memory, your program (
must ensure that the pointer returned by ALC$RA i s returned by the main
entrypoint of your program to the calling program by storing i t into

(

Preliminary Release 18-10 First Edition

Program EPF Calling Sequence

Allocate «w* StL finned &MtteoA V*ta

SWtffc
FWu_

CeKai^cterti

/tiSSN , 1 T

j

1
06tralm)

*327*4
ST/tMl£ J

The AI£$RA Subroutine
Figure 18-3

First Edition 18-11 Preliminary Release

Advanced Programmer's Guide

AHOO^L Spict* "ftr Warned Fd*cij*i vVlte.

NwmW of

AUocfihe.

PULL

IWT

I
ALCttA (%lfuor<^ rtn-fcn-ptr)

i
pre

I
M*//wortf

i

STRVC

Preliminary Release

The ALC$RA Subroutine
Figure 18-4

18-12 First Edition

Program EPF Calling Sequence

j ^ ^ \ the r tn- fcn-p t r argument of the main entrypoint of your program. Then,
your program simply re turns t o i t s invoker. The invoking program i s
responsible for deal locat ing the memory a l loca ted by ALC$RA.

Sample Command Functions

The f i r s t sample program i s a FORERAN program
usernumber of the user invoking the program.

t h a t re turns the

SUBROUTINE USR1M(GOMLIN,ODEE,IGN,FUNC,RTNPTR)
INTEGER*2 COMLIN(l) ,OODE,IGN,FUNC
INTBGER*4 RTNPTR(2)

C
$INSERT SYSCOM>ERRD.INS.FTN
$INSERT SYSCOM>KEYS.INS.ETN
C

INTEGER*2
& U,
& TIMARR(12),
& STR(2),
& STRLEN,
& H,
& T

C
C
C

/ * User number; l a t e r , un i t s d i g i t of U.
/ * TIMDAT a r ray .
/ * Str ing value containing user number.
/ * Number of characters in STRLEN.
/ * Hundreds d i g i t of U.
/ * Tens d i g i t of U.

Make sure we have no command l i n e .

IF (COMLIN(l).EQ.O) GO TO 10

C Reject attempted use of command l i n e .
C

COEE=E$IVCM / * Inval id command e r r o r .
IF (AND(FUNC,: 100000) .EQ.O) / * Invoked as command?

& CALL ERRPR$(K$IRTN,COEE,,No command l i n e accepted 1 ,24,
& 'USERNUMBER',10)

/* Return to invoker.
C
10

C
20

RETURN

CALL TIMDAT(TIMARR,12)
U=TIMARR(12)
IF (U.GT.9) GO TO 20
STR(l)=LS(U,8)+'0 '
STRLEN=1
GO TO 100

H=U/100
U=U-H*100
T=U/10
U=U-T*10
IF (H.NE.0) GO TO 30
STR(l) =LS (T,8) -KJ+'00'
STRLEN=2
GO TO 100

/ * Get user number in TIMARR(12).
/ * For ease of access .
/ * More than one d i g i t ?
/ * Convert t o s i ng l e -d ig i t ASCII.
/* Set to 1 digit.

/* Get hundreds digit.
/* Get last two digits.
/* Get tens digits.
/* Get last digit.
/* Need three digits?
/* No, make two digits into ASCII.
/* Indicate two digits.

First Edition 18-13 Preliminary Release

Advanced Programmer's Guide

C
30 STR(l)=Ifi(H,8)-rtM-,00I /* Make three digits into ASCII.

anR(2)=LS(U,8)+'0 '
STRLEN=3 /* Indicate three digits.

C
100 IF (AND(FUNC,: 100000) .NE.O) GOTO 200
C
C Not a function call; display user number.
C

CALL TNOUA('Your user number is ',20)
CALL TN0UA(£TR,STRLEN)
CALLTNOU(,.,,l)
GO TO 300

C
C A function cal l ; allocate and store user number.
C (
200 CALL ALS$RA(STR,INTL(gERLEN) ,RTNPTR) V
C
C Return to invoker.
C
300 CODE=0 /* Success I

RETURN
C

END

The next sample program, wri t ten i n PL1/G, returns the usemame of the ^^%
invoking user.

usemame: proc(comlin,code,ign,func,rtn_^£cn_ptr);

del comlin char(32) var, / * Must be null. */
code fixed bin(15), / * Severity code. */
ign fixed bin(15), / * Ignored. */
func b i t (l) , /* Set i f function cal l . */ (
rtn_fcn_ptr ptr; /* Returned function value pointer. */

%include ,SYSOOM>ERRD.INS.EL1,;
%include 'SYSGOM>KEYS.INS.PL1';

del unam char(32) var; /* Trimmed usemame. */

del 1 timarr,
2 ignore (12) fixed bin(15), /* Ignore 12 halfwords. */
2 user_name char(32); /* The usemame. */

del 1 rtn_struc based (rti\JEcn_ptr),
2 version fixed bin(15),
2 value char(32) var;

del timdat entry(1,2 (12) fixed bin (15) ,2 char (32),fixed bin(15)),
errpr$ entry(fixed bin(15),fixed bin(15) ,char(40),

fixed bin(15),char(8),fixed bin(15)),

Preliminary Release 18-14 First Edition

Program EPF Calling Sequence

alc$ra entry(fixed bin(31) ,ptr),
tnou entry (char(60),fixed bin(15)),
tnoua entry(char(60),fixed bin(15)j;

if comlin='' then
do; / * No command l ine. */
call timdat(tinarr,28);
unam=trim(user_name, '11 'b);
i f func then

do; / * Command function invocation. */
call alc$ra (divide (length (unam) +5,2,15), rtn_w£cn_ptr);
rtrL_struc.version=0;
rtn_str uc. valuesninam;
end; / * i f func */

else
cb; /* Command invocation. */
call tnoua('Your user name is ',18);
call tnoua ((unam),length (unam));
call tnou('.\l);
end;

code=0; / * Success. * /
end; / * if comlin=,* * /

else
do; / * i f comlin^'' * /
code=e$ivcm;

r i f *func then
call errpr$(k§irtn,code,,No command line accepted',24,

'USERNAME',8);
end; / * if comlirT='' * /

end; / * username: proc */

DETAILED COMMAND CALLING SEQUENCE

The detailed command cal l ing sequence adds a third argument to the
command cal l ing sequence described earlier in t h i s chapter. This third
argument i s a structure passed t o the program EPF being invoked that
includes the following information:

• The command name as entered by the user

• A pointer to CPL local variables, if appropriate

• Command preprocessing information

Typically, a program EPF uses only the portions of the structure that
are applicable to the program. For example, if you wish your program
to display the command name entered by the user, rather than the
original name of your program in error messages, you could have the
main entrypoint of your program use only the command name as entered by
the user and ignore the remainder of the structure.

First Edition 18-15 Preliminary Release

Advanced Programmer's Guide

This remainder of this section describes the information passed in the
third argument of the program EPP calling sequence.

Arguments in the Detailed Command Calling Sequence

The detailed command calling sequence accepts three arguments:

1. The command line, an input-only argument

2. The severity code, an output-only argument

3. A structure containing command processing information, an
input-only argument

If a program that accepts only these three arguments is invoked as a
command function, no pointer to the returned value is returned.

Figure 18-5 illustrates the command calling sequence, where EPF is the
main subroutine of the program EPF.

Command Line; See the section earlier in this chapter entitled COMMAND
CALLING SEQUENCE for information on the command line. That information
applies to command functions as well.

Severity Code: See the section earlier in this chapter entitled
COMMfiND CALLING SEQUENCE for information on the severity code. That
information applies to command functions as well.

Command Processing Information: Figure 18-6 illustrates the command
processing information, which is described in detail in the next
section.

Currently, two versions of the command processing information structure
are defined. The first two fields, the command name and the version
number, are always present. If version is 0, the remainder of the
command processing information structure is undefined and should not be
referenced; only halfwords 0-17 (0-2L octal) are defined for a version
0 structure. If version is 1, the entire structure is defined as
shown; that is, halfwords 0-25 (0-31 octal) are defined. Future
versions of the structure will have higher version numbers and may
define extensions to version 1 of this structure; however, the content
and meaning of halfwords 0-25 will remain the same.

WARNING

Never store data into the command processing information
structure for any purpose. Some calling programs may have
declared only 18 halfwords of storage for a version 0

Preliminary Release 18-16 First Edition

Program EPP Calling Sequence

Dtbhkd Command CalU/v^ ^^^/\ce

STR1WQ

Proce»*wuj

l(vform*Li »n

STfeUC

I 1
EPP Ccimmftnd-lrAe, seventy -code, C0/nww>Ad-*»̂ $o<v*a&•||,)

I
HAUP

INT

^ VaritfAj

0- No £rr©r

Detailed Command Calling Sequence
Figure 18-5

First Edition 18-17 Preliminary Release

Advanced Programmer's Guide
(

Cowmani Processing ^Wmcxi*»0ft Ute^o/vs 0 <tod - l y

Oct 4gp
0

ij/i 1*1 ^5MrhA*k<i Name.

A 191 Very Cftor 1>

^3BL STIUtfG

£eserVe<l

-VKUC-FRgfl Value

1 —

AJJX

HALF torr

CPL LoulWUcs f W fTfc,

1 gfr 1' f fT !A 8 r r i 11 BIT

£M &rr

HALF IWT

HALF JNT

&5etve<J IS S IT

Uafori
«fec w * .
JBF 0

U **
i? *±

ft 25

21 ^

(

25- 31

c

Mdfe* For * Version 0 structure, on/y KafWU # - 1 ? L0-Zi ocUl)

kvc <Je$i/\eJ valves •

Command Processing Information
Figure 18-6

Preliminary Release 18-18 First Edition

Program EPP Calling Sequence

structure, representing halfwords 0-17, and any attempt to
store beyond halfword offset 17 may corrupt memory. In
addition, because the structure is an input argument to the
program being invoked, the calling program may place the
structure in memory that is protected against writing.

Your program should check the version number only if it needs to use
information beyond halfword offset 17 (21 octal) into the command
processing structure; and, in such a case, your program should check
only that the version number is not 0 to ensure that the information
being retrieved is valid. Do not reject version numbers higher than 1.
However, if you choose, you may have your program reject version
numbers that are negative, as such numbers probably indicate corrupted
memory.

Command Processing Information

This section describes each field in the command processing information
structure shown in Figure 18-6.

Command Name: The command name field contains the command name as
specified by the user. The name may or may not include the .EDN
suffix, but it will contain only the final element of a pathname. Your
program may use this name rather than the name designed for it in
messages displayed to the terminal, or your program may reject attempts
to invoke it with a name other than that which it was designed to have.

Typically, the command name is the same name specified during the BIND
session that linked the program. However, if a user copies your
program to a file with a different name and invokes the copy, or if the
name of the file containing the program is changed (via CNAME for
example), the command name will be different from the original name of
the program.

Version: The version number field contains the version number of the
command processing structure. Currently, version numbers 0 and 1 are
defined as described above. Higher version numbers will be used if
future versions of PRIMDS extend the command processing information
structure. The following table lists the currently defined version
numbers and the halfwords that are defined (have meaningful values) in
a structure with each version number listed:

Version Defined Halfwords

0 0-17
1 0-25

First Edition 18-19 Preliminary Release

Advanced Programmer's Guide
(

CPL Local Variables Pointer: The CPL Local Variables Pointer is (/«%
provided if the calling program is either a CPL program or a program j
EPF provided with a CPL Local Variables Pointer (ultimately invoked by
a CPL program).

Sometimes referred to as the vcb_ptr, for Variables Control Block
pointer, this pointer is used only when the program EPF wishes to read
or set a CPL variable that is local to the CPL program that invoked the
program EPF. Typically, such programs are designed as command
functions, and the CPL program uses the &SET_VAR directive, as in:

&SET_VAR MYVAR := [RESUME MyPROG]

However, a program that must reference more than one CPL variable must /
either be constrained to use only global variables (accessing them via V
the GV$GET and GV$SET subroutines) or must use the CPL Local Variables
Pointer along with the LV$GET and LV$SET subroutines. A program
constructed in the latter fashion might be invoked from a CPL program
as follows:

RESUME MYPROG MYVAR OTHERVAR

Here, the MYPROG program accepts two variable names, MYVAR and OTHERVAR
in this example, and accesses them using LV$GET and LV$SET, which are
described (along with GV$GET and GV$SET) in the Subroutines Reference
Guide.

The CPL Local Variables pointer is MJLL() (7777/0) if the invoking
program is not a CPL program, or if it is not a program EPF invoked by
a CPL program (either directly or via other program EPFs). A valid CPL
Local Variables pointer is generated only by the invocation of a CPL
program, and is valid only while that program is active; only program /
EPFs invoked by the CPL program, and their descendants, may use the \
Local Variables pointer for that CPL program.

Note

For maximum flexibil i ty, design your program so that i t accepts
either global variables names beginning with a period (.) or
local variable names not beginning with a period (.) . Then,
your program would call either GVGET/GVSET or LVGET/LVSET,
depending on what type of variable name i s supplied.

-DIRECTORY (-DIR) Bit: The -DIRECTORY bit i s set i f the command
processor i s matching f i l e directories when checking wildcard-laden
names. It does not necessarily mean that the f i l e system object (/-̂ %
specified in the current invocation i s a f i l e directory. 1

Preliminary Release 18-20 First Edition

Program EPF Calling Sequence

-SEGMENT_PIRECTORY (-SEGDER) Bit: The -SBGMENT_piRECrORy bit i s set if
the command processor i s matching segment directories when checking
wildcard-laden names. It does not necessarily mean that the f i l e
system object specified in the current invocation i s a segment
directory.

-FILE Bit; The -FILE bit i s set i f the command processor i s matching
f i les when checking wildcard-laden names. It does not necessarily mean
that the f i l e system object specified in the current invocation i s a
f i l e .

-ACCESS_CRTEGORY (-ACAT) Bit; The -ACCESS_CATEGORY bit i s set i f the
command processor i s matching access categories when checking
wildcard-laden names. It does not necessarily mean that the f i l e
system object specified in the current invocation i s an access
category.

-RBF Bit; The -RBF bit i s set i f the command processor i s matching RBF
f i les when checking wildcard-laden names. It does not necessarily mean
that the f i l e system object specified in the current invocation i s an
RBF f i l e . (RBF f i l es are reserved for use by Prime.)

-VERIFY (-VEY) Bit: The -VERIFY bit i s set i f the command processor
requires user verification of f i l e system objects selected by
wildcard-laden names. It does not necessarily mean that the user has
verified the f i l e system object specified in the current invocation,
because verification i s requested only if the user specifies a
wildcard-laden name. Use the wildcard bit , described below, if you
wish to determine whether the user was actually asked to verify the
current invocation for the f i l e system object — if both the -VERIFY
bit and the wildcard bit are set (1), then verification was both
requested and provided.

-BOETOMJJP (-B0TOP) Bit; The -BOTTOHJUP bit i s set (1) if the
-B0TT0POJP option (abbreviatied -BCHUP) was specified on the command
l ine, causing any treewalking to be performed at the lowest directory
levels f irs t . It does not necessarily mean that treewalking i s being
performed; see the treewalking bit , described below, for that
information.

-WALUFRCM (-WLKEM) Value; The -WRLK̂FRCM value i s set to either the
value specified following the -WBLFLFRCM option (abbreviated -WLKBM) on
the command line or to the default value, which i s 2. Level 1 i s the
contents of the directory i tse l f ; level 2 i s the contents of the
subdirectories, and so on. For example, in the treewalking
specification DIR1>@§>F00, level 1 i s the KRl directory; i f FOO
exists in DIR1, i t i s found only if -WRLK_FRCM 1 i s specified.

First Edition 18-21 Preliminary Release

(
Advanced Programmer's Guide

This value does not indicate whether treewalking i s , in fact, being
performed; see the treewalking bit, described below, for that
information.

-WRLKJID (-WLKTO) Value: The -WALOO value i s set to either the value
specified following tn~e -WALK_TO option (abbreviated -WLKTO) on the
command line or the default value, which i s 999. This value does not
indicate whether treewalking i s , in fact, being performed; see the
treewalking bit , described below, for that information.

Iteration () Bit: The iteration bit i s set to ' l 'b i f the command
line used to invoke the program contained an iteration l i s t (that i s ,
contained parentheses). However, this bit i s never set if the BIND
subcommand NO__ITERATIDN (abbreviated NTTR) was issued when the program
was linked.

Wildcard @ + Bit: The wildcard bit i s set to ' l 'b i f the command line
used to invoke the program contained a wildcard-laden entryname (that
i s , contained the @, +, or A character in the final element of a
pathname or in a simple pathname). However, this bit i s never set i f
the BIND subcommand NO_WILDCARD (abbreviated NWC) was issued when the
program was linked.

Treewalk >@> >+> Bit: The treewalk bit i s set to ' l 'b i f the command
line used to invoke the program contained a wildcard-laden directory
name (that i s , if i t contained the @, +, or * character in a non-final
element of a pathname). However, this bit i s never set if the BIND
subcommand NO_TREEWALK (abbreviated NTW) was issued when the program
was linked.

Sample Program v

The following sample PL1/G program simply displays a l l of the
information in the command processing information structure. While i t
i s intended primarily to illustrate how to declare and use the command
processing information structure in PLl/G, i t i s also a useful program
for experimenting with various combinations of command preprocessing
features and BIND subcommands that enable, disable, or set parameters
for command preprocessing features.

com_proc_info: proc (comline,code,cominfo);

del comline char(1024) var, / * The command l ine. */
code fixed bin(15), / * Severity code. */ ,
1 cominfo, / * Command processing info. */ \

2 comname char(32) var, /* The command name. */
2 version fixed bin (15), / * Currently 0 or 1. */

(

Preliminary Release 18-22 First Edition

Program EPF Calling Sequence

2 vcb_ptr ptr, / * CPL local variables. */
2 preprocessing^info, /* Command preprocessing info, */

3 mocL_after_date fixed bin (31),
/ * -MDDIFIED_JtfTER date. */

3 mocL_before_date fixed bin (31),
/ * -J©nEFIED_3EEORE date. */

3 baK_after_date fixed bin (31),
/ * B̂flCKEDUP3ETER date. */

3 baK_before_date fixed bin (31),
/ * -BftCKEDUP_BEPORE date. */

3 type_dir bit (1), / * -DIR option specified. */
3 type_segdir b i t (l) , /* nSEGDER option specified. */
3 type_file b i t (l) , /* -FILE option specified. */
3 type_acat b i t (l) , /* -ACAT option specified. */
3 type_rbf b i t (l) , /* -RBF option specified. */
3 reservedUL bit(11), / * Reserved for future use. */
3 verify_sw b i t (l) , /* -VERIEY option specified. */
3 botup_sw bit (1), /* -BO0UP option specified. */
3 reserved_2 bit(14), / * Reserved for future use. */
3 walK_from fixed bin (15),

/ * -waLK_FRCM value. */
3 walK_to fixed bin(15), / * -WRLK_TO value. */
3 in_iteration b i t (l) , /* In iteration sequence. */
3 in_wildcard b i t (l) , /* In wildcard sequence. */
3 in_treewalk b i t (l) , / * In treewalk sequence. */
3 reservedL_3 bit (13); /* Reserved for future use. */

%include ,SYSO)M>ERRD.INS.PLll;
%include •SYSGOM>KEYS.INS.PL1';

del strings fixed bin(15), / * Number of strings. */
last_string char(80) var, / * Last string. */
line t̂OL.show char(80) var; /* Line waiting to be shown. */

del (tnoua,tnou) entry (char (80) ,fixed bin (15)),
tovfd$ entry (fixed bin(15));

call tnoua(fCommand name i s n , , 17) ;
call tnoua ((comname),length (comname));
call tnoua(, n f , l) ;

i f version=0 then
do; / * Version 0 means no more info. */
call tnouf 1 . ' , !) ;
code=0;
return;
end;

if version=l then; /* Expected version number. */
else

do; /* New version, display it. */
call tnoua(', version #*,11);
call tovfd$(version);
end; /* if version~=0 */

First Edition 18-23 Preliminary Release

Advanced Programmer's Guide /

(
i f vcb_ptrs=null() then call tnou(', no CPL variables.1,19);
else cal l tnou(', with CPL variables.f ,21) ;

call tnouaCCommand line i s n , ,17) ;
cal l tnoua ((comline),length (comline));
cal l tnou(, n . ' ,2);

strings=0;
last_jstring='*;
line_to_show='Options: ';

if mo6Lafter_date=0 then;
else call show_date('-MDIHFIED_JtfTER',mocl_after_date);

i f modjDefore-datessO then; /
else call shcw_date('-roDIFIEDJEroi^l

fnocl_before_date); V

i f baK.afte^datesO then;
else cal l show_<kte('-BACKEEUP_AETER' ,baK_af ter_date);

i f baKjDefore-date^O then;
else call show_date(,~BACKEDUP_BEPOREI

 fbaKjDefore_date);

i f type_dir then call show_this('-DlR');
if type__segdir then call show_this('-SEGDIR'); (/**>
if type_file then call show_this('-FILE'); K^X
i f type_acat then call show_this('-ACAT*);
i f type_rbf then call show_this('-BBF');
if verify_sw then call showJthis(*-VERIFY1);
i f botup__sw then call show_this('-BOTUP');

i f walK Êrom=2 then; / * The default. */
else cal l shcw_value(,-WALKJRCM',walK_from);

i f walk_to=999 then; / * The default. */ (
else call show_value('-WALILTO',walK_to);

i f in_iteration then call show_this('iteration');
i f injwildcard then call showjthis ('wildcard');
i f in_treewalk then call show_this('treewalk');

/* Show last line i f we have shown anything. */

if strings=0 then;
else

if strings=l then
call tnou('Option: • 11last_string,length(last_string) +8);

else call show_this(");

code^O; /
return; v

show_date: proc (string,dtm); / * Display option with date/time. */ ,

Preliminary Release 18-24 First Edition

Program EPF Calling Sequence

del str ing char(32) var, r aci str ing cnar^jz; va
dtm fixed bin (31);

del dow fixed bin (15),
dfcm_str char(21);

del cv$f da entry (bin (31) ,bin,char(21));

ca l l cv$fda(dtanfdbwrdtni_str);

ca l l showjthis (string 11 • 'II trim(dtm_str , '11 «b)) ;

end; /* show_date: proc */

show__value: proc (string, value); /* Display option with integer. */
del string char(32) var,

value fixed bin(15);

call show_this(stringII1 Mltrim(char(value), '11 'b));

end; /* show_yalue: proc */

showjthis: proc (string); /* Display string in comma list. */

del string char(80) var;

^ del joiner char(6) var;

str ings-str ings+1;

if strings<=2 then joiner='f;
else

if string='* then
if strings<=3 then joiner=' and ';
else joiner=', and ';

else joiner^', ';

if length (last_string)+length(line__to_show)+length(joiner) >79 then
do;
i f strings<=3 then

call tnou ((line__to_show),length (line_to_show));
else call tnou (line_to_show 11',',length (line_to_show) +1);
i f strings' • then line_to_showss,and " I |last_string;
else line_to_show=last_string;
end;

else
line_to_show=line_to_show| I joiner I |last_string;

i f string='' then call tnou((line__to_show) , length (line__to_show));
else last_string=string;

end; /* showjthis: proc */

end; /* oom_proc_i«fo: proc */

First Edition 18-25 Preliminary Release

Advanced Programmer's Guide

COMPLETE CALLING SEQUENCE

The complete calling sequence combines the command function calling
sequence with the command processing information provided in the third
argument of the calling sequence, as used in the detailed command
calling sequence. In the command function calling sequence, described
earlier, the third argument was ignored; in the detailed command
calling sequence, as in the complete calling sequence, the third
argument provides the program with information on the processing of the
command that invoked the program.

Figure 18-7 illustrates the complete calling sequence, where EPF is the
main entrypoint of the program EPF.

The first and second arguments are described in detail in the section
entitled COMMfiND CALLING SEQUENCE earlier in this chapter; the third
argument is illustrated in Figure 18-6 and is described in the section
entitled DETAILED COMMfiND CALLING SEQUENCE earlier in this chapter;
the fourth and fifth arguments are described in the section entitled
COMMfiND FUNCTION CALLING SEQUENCE. The remainder of this section
explains why the complete calling sequence is useful and points out
effects of combining a command and a command function in one program.

Why Use the Complete Calling Sequence?

A program that uses all five arguments in the complete calling sequence
does so for one of several reasons:

• It is a command function that needs access to CPL variables
local to the CPL program that called it.

• It is a command function that needs access to its own command
name.

• It is a program that may be invoked as a command function or as
a command, and when invoked as a command, it wishes to make use
of command preprocessing information.

• Any combination of the above three reasons, such as a program
that, when invoked as a command, does not need command
processing information, but when invoked as a command function,
needs the CPL Local Variables pointer.

Each of these uses of the complete calling sequence is examined in more
detail in the next section.

Command Function Needing Local CPL Variables

When a command function needs access to the CPL variables local to the
CPL program that invoked the command function, it uses the LV$GET and

Preliminary Release 18-26 First Edition

(

C

Program EPP Calling Sequence

Complete Gllt^j S^weAce

A r g <//*»«. A-fe*

ST*J*IG

PrDce&siA^

STWG

A £***** CAII
r 4 l reserved |

/ I J >l
£ P F L^^^wvd-liAe^seirerifcy-Cftdc co*meiAd-\A$©rtnoiiSoA. -/i/nctJoA-aklJ,rtn-fcft-ptr)

J ' I
PT*

J2>

1 Ketiio

HAUF
INT

J
#•' At Error

>J2T- Error

Pet«pAcj Wife

STfciwa

sntfc

j

Complete Calling Sequence
Figure 18-7

First Edition 18-27 Preliminary Release

Advanced Programmer's Guide (

LV$SET subroutines to read and set the local CPL variables. An example
of a command function that also sets local CPL variables i s the
[OPEN_FILE] function, described in the PRIM3S Commands Reference Guide
and in the CPL User's Guide. Although not an EPF, this function could
be written as an EPF as of Rev. 19.4, due to the program EPF interface
described in this chapter.

Command Function Needing Command Name

Rarely, a command function may need access to i t s command name, if i t
wishes to make a distinction (or to enforce an equivalence) between the
name of the program as built during the BIND session that linked the
program and the name of the program as invoked by the user. For
example, when such a program issues messages, i t may wish to use i t s
invocation name, rather than i t s original name, so that i t s name may be
easily changed without making error messages originating from the
program more difficult to track down.

Program Usable as a Command and as a Command Function

A program may need to be usable as both a command and as a command
function. In addition, i t may need access to command processing
information when invoked as a command, as a command function, or in
both cases.

For example, a program may, when invoked as a command, wish to use
command preprocessing information to generate useful output, depending
upon whether i t was invoked using a wildcard, treewalking, or iteration
specification. The same program, when invoked as a command function,
does not need that information.

It i s important to understand that the PRIMDS command processor does
not perform any type of command iteration (including wildcarding,
treewalking, and explicit iteration) when i t i s called upon to invoke a
program as a command function.

Therefore, a program invoked as a command function should not expect
the command preprocessing information in halfword offsets 21-25 (25-31
octal) in the command processing information structure to contain any
usable information.

The PRIPDS command processor knows that a command i s being invoked as a
command function because i t s entrypoint, CP$, has a command-function
bit as one of i ts input arguments. When set, CP$ does not perform any
command iteration on the command line; instead, i t passes the
untouched command line directly through to the program EPF. (Other
command preprocessing i s performed as usual.)

However, a user-written command processor, other than CP$, may invoke a
program EPF as a command function, providing useful information in

Preliminary Release 18-28 First Edition

C

Program EPF Calling Sequence

r halfword offsets 21-25 in the command processing information structure
fcy passing it to EPF$INVK or EPF$KJN. If your program EPF is designed
to be invoked only by such an application, it may use the command
preprocessing iteration information even when invoked as a command
function. This situation is expected to be quite rare.

First Edition 18-29 Preliminary Release

CHATTER 19

Invoking Programs Prom Within Programs

A program or library may invoke another command, program, or function. r PRIMDS provides three methods of invoking a program EPP, whether or not
i t i s a function:

• Via the CP$ subroutine, which invokes the PRIMDS command
processor

• Via the EPF$RUN subroutine, which invokes any program EPF

• Via the EPP$INVK subroutine, which invokes a program EPF that i s
already mapped to memory, allocated, and initialized

You may also use the CP$ subroutine to invoke a command, a program, a
function, a CPL program, a CPL function, or a static-^mode program.

This chapter describes how to use these subroutines to invoke commands,
programs, and functions. This chapter also describes how to free the
memory used to store the result of a command function (the FRE$RA
subroutine). Finally, this chapter explains particular items of
interest when invoking other commands, programs, or functions.

Commands, Programs, and Functions

There are several ways to categorize, or group, commands and programs
under PRIM3S. For example, one may consider Prime-supplied commands
and programs as distinct from user-supplied commands and programs.
However, the PRIMDS command processor provides a uniform interface to

First Edition 19-1 Preliminary Release

Advanced Programmer's Guide
(

all commands and programs so that the category into which a particular (
command or program fits is usually not an important consideration. ^'

Because of the flexibility of the PRIMDS command processor, systems may
add their own commands. Therefore, categorizing commands and programs
by whether they are Prime-supplied is not particularly useful when
writing programs that invoke them.

In fact, there are three ways of categorizing commands and programs
that are most useful:

• Where the programming instructions for the command or program
reside

• In which format the programming instructions for the command or
program are stored

• Whether the command or program is invoked as a function

In most cases, the PRIMDS command processor allows you to issue
commands and run programs independent of their categorization. The
interfaces described in this chapter, CP$, EPF$RUN, EPP$INVK, and
FRE$RA pertain to different categories of commands and programs:

• CP$ can invoke any command or program, optionally as a function.

• EPF$RUN and EPF$INVK can invoke only a program EPF, optionally
as a function.

• FRE$RA is used only when invoking functions, after the function
has returned its value; it is used independently of the
function location or format.

The categories of commands and programs are described in more detail
next. As you will see, functions are commands or programs that have
additional functionality. /

Where the Programming Instructions Reside: The location of the
programming instructions for a command or program is one of the
following:

• Internal to the PRIMDS Operating System

• On disk, in the CMDNCO UFD

• On disk, but not in the CMDNCO UFD

The first two places are where commands are stored; the latter place
is where programs are stored. A command residing in the CMDNCO UFD is
just a program in a special place, and it may be run as a program; a
program not residing in the CMDNCO UFD may be made into a command (
simply by copying it into CMDNCO. Therefore, the distinction between
commands and programs on disk is somewhat hazy; the terms "command"

/ ^ K

(

Preliminary Release 19-2 First Edition

Invoking Programs From Within Programs

and "program" are often interchangable, and are often used together in
this guide. Some, but not necessarily all, commands and programs are
supplied by Prime.

Internal to PRIMDS are internal commands. These are all
Prime-supplied; Prime does not support the modification of PRIMDS by
customers, such as to add new internal commands. Because internal
commands reside in virtual memory rather than on disk, they are treated
specially by the PRIMDS command processor. In fact, some internal
commands have special privileges, such as the ability to access
internal PRIMDS tables.

While user-written programs cannot always perform the same functions as
internal PRIMDS commands, such programs can call the PRIMDS command
processor to invoke internal PRIMDS commands.

A special internal PRIMDS command is the RESUME command, abbreviated R.
The RESUME command is used to run a program. Special processing is
performed by the command processor to treat a RESUME command as the
invocation of a program rather than the invocation of an internal
PRIMDS command, although this special processing is not usually
important except when handling errors and such.

Format of the Programming Instructions; The format of the programming
instructions for a command or program is important to the PRIMDS
command processor, because it determines how the command processor
invokes the command or program. For commands and programs that reside
on disk, there are three formats:

• Executable Program Format (EPF) Runfiles

• Command Procedure Language (CPL) Programs

• Static-mode Runfiles

(A fourth format, the SEG runfile, is not recognized by the PRIMDS
command processor — it is recognized only by the SEG command, which
itself is a static-mode runfile residing in the GMDNCO UFD.)

Whether the PRIMDS command processor is called upon to execute a
command in the GMDNCO UFD or elsewhere on disk, it uses suffix
searching to scan for the appropriate runfile. The suffixes .RUN,
.SAVE, and .CPL are tried, in that order, and then a search with no
suffix is tried. Based on the suffix that was in place when the
runfile was found, the command processor infers the format of the
runfile, as described in Chapter 16.

The most flexible format for programming instructions is the EPF,
because a program written as a program EPF may be a function and in
fact can determine whether it is being invoked as a function and modify

r its actions accordingly. In addition, a program EPF can modify CPL
variables local to the CPL program that invoked it. Finally, a program
EPF has the most control over selecting command processing features and

First Edition 19-3 Preliminary Release

Advanced Programmer's Guide

determining which features are in use for a particular invocation.

The second most flexible format is the CPL program. A CPL program can
be written either as a program or as a function. It can also choose
how it will handle wildcards, as wildcards are not processed for CPL
programs.

The least flexible format is the static-mode program. A static-mode
program cannot be written as a function. The only control a
static-mode program has over command processing features is by having
its name begin with NX$ or W$ to disable various combinations of such
features; this requires users to enter the NX$ or KW$ prefix when
entering the program name, however.

For commands internal to PRIJOS, there is only one format, and that is
the format of a subroutine, or procedure, that accepts a standardized
calling sequence as its arguments.

Functions: A function returns a value to the invoker of the function.
This value typically replaces the invocation of the function in a CPL
program command line, for example. The difference between a program
that is a function and one that is not is whether the program is
designed to operate as a function and whether the invoker of the
program is invoking it as a function.

For example, the ABBREV -STATUS command, when used as a command, does
not operate as a function — it displays the pathname of the user's
abbreviation file, and the number of abbreviations defined in the file:

OK, ABBREV -STATUS
Abbreviation file: UNGER>LOGIN.ABBREVS
Abbreviations: 183

OK,

When used as a function, however, the ABBREV -STATUS modifies its
behavior to display nothing to the terminal and to instead return the
pathname of the user's abbreviation file as the value of its
invocation:

OK, TYPE Your abbreviation file is: [ABBREV -STATUS]
Your abbreviation file is: UNGER>LOGIN.ABBREVS
OK,

The displayed output came not from the ABBREV -STATUS invocation, but
from the TYPE command.

The ABBREV -STATUS command is an example of a command that operates as
either a command or as a function, depending on how it is used.

Preliminary Release 19-4 First Edition

Invoking Programs From Within Programs

Typically, however, a command or program always operates as one or the
other. For example, another internal command, RDY, operates only as a
command — when invoked as a function, it still behaves as a command
and returns no value:

OK, TYPE Value of RDY command is: [RDY]
OK 14:33:39 243.024 11.354
Value of RDY command is:
OK,

The first line of displayed output came from the invocation of the RDY
command. The second line of output came from the invocation of the
TYPE command, which included a function invocation of RDY that returned
no result because RDY is not a function.

Conversely, a command or program may be constructed to run only as a
function. For example, when invoked as a command, the internal command
SUBSTR produces the following message:

OK, SUBSTR TEST 2 2
May only be invoked as a command function. (SUBSER)
ER!

Here, the SUBSTR command detected that it was not invoked as a
function, displayed an error message, and returned a positive severity
code (producing the ER! prompt).

Almost all Prime-supplied functions are commands, either internal to
PRIMDS or residing in CMDNCO. Functions that are commands are often
called command functions. Prior to Rev. 19.4, users could write
functions only in CPL; as of Rev. 19.4, they may write functions as
program EPFs. Although the term program function can be used to refer
to a function not supplied ty Prime, the distinction is not usually
important for readers of this guide; therefore, the terms function and
command function are used generically to refer to any command or
program that returns a function value when invoked as a function.

Any type of command or program may be written as a function except for
a static-mode program. A restriction for CPL programs is that they
cannot determine whether they are being invoked as functions and modify
their behavior accordingly; they must either always assume they are
being invoked as a function or as a program, or they must accept a
command line option that is supplied by the invoker to indicate which
kind of invocation is taking place. Program EPFs can determine which
form of invocation is being used, as described in Chapter 18.

First Edition 19-5 Preliminary Release

Advanced Programmer's Guide
(

Deciding Which Interface to Use (

To write a program, library, or subroutine that invokes another
command, program, or function, you must first decide which interface to
use:

• CP$

• EPF$RUN

• EPF$INVK

• FRE$R&

You make your decision based on what kind of program you wish to
invoke, and whether you wish to use command preprocessing features such /
as variable expansion, wildcarding, and name generation. V

In summary:

• Use CP$ to invoke a PRIMDS command or a program, or to include
command preprocessing features.

• Use EPF$FDN to invoke a program EPF.

• Use EPF$INVK to invoke a program EPF with more control over how /
and when the EPF is set up. y

• Use ERE$RA only if you invoke a function and accept a returned
text string.

Typically, you choose only one of the CP$, EPF$RUN, and EPF$INVK
subroutines; these allow your program to invoke either a program or a
function. After calling a function, your program makes use of the
returned text string. Your program then calls the FRE$RA subroutine to
free the memory used to store the returned text string, allowing the /
memory to be reused. ^

When to Use CP$

You use the CP$ subroutine to invoke:

• Internal PRIMDS commands, such as ASSIGN

• External CPL programs

• External EPFs

• External static-mode programs

Except for external static-mode programs, any of the above may be
invoked as functions.

Preliminary Release 19-6 First Edition

Invoking Programs From Within Programs

Calling CP$ invokes the PRINDS command processor, STD$CP. This same
command processor i s invoked when the user enters a response to the OK,
prompt issued by PRINDS.

User-defined abbreviations are not expanded by CP$. Therefore, you can
reliably use CP$ in your program without concerning yourself with
user-defined abbreviations that might change the meaning of your
command l ines. For example, calling CP$ to invoke the ASSIGN MTO
command always invokes that command, even if the user has defined
ASSIGN or MTO as an abbreviation via the PRINDS abbreviation faci l i ty .

The PRINDS command processor, invoked via CP$, determines what command
i s being executed as follows:

1. The first token of the command line i s parsed. Tftis i s the
name of the command being invoked. For example, consider the
command line:

COPY FRED>MEMD.lV30/84 *>MEM0S>MEND.118

Here, the name of the command i s COPY.

2. The command name i s checked against the l i s t of internal PRINDS
commands. One important internal PRINDS command i s RESUME; i f
the command i s RESUME, the program specified by the pathname
following the RESUME command i s invoked.

If the command name i s not RESUME, and i s found in the l i s t of
internal PRIMDS commands, the appropriate command line
preprocessing (such as wildcarding) i s performed, and the
internal PRINDS subroutine that corresponds to the command name
i s invoked. The command processor returns to the caller when
the internal PRINDS subroutine has finished.

3 . If the command name i s not in the l i s t of internal PRINDS
commands, the command processor searches the CMDNCO directory
for a program with the same name as the command. If found, the
program i s executed as i f i t had been RESUMEd.

When executing a program, the command processor f irst performs the
appropriate command preprocessing (such as wildcarding), depending upon
the program type. If the program i s an EPF, the command preprocessing
i s determined by information within the EPF i tse l f , as built using BIND
subcommands. For information on BIND subcommands that describe the
command preprocessing environment for an EPF, see Chapter 17. See the
PRINDS Commands Reference Guide for information on command
preprocessing for static-mode and CPL programs.

First Edition 19-7 Preliminary Release

Advanced Programmer's Guide

Although command programs reside only in the CMDNCO directory, CP$ can
be used to invoke programs residing anywhere on disk by invoking the
internal command RESUME via CP$. For example, to invoke the program
ACGOUMES__PAYABLE in the current directory, call CP$ with the following
command line:

RESUME ACCDUNESPAYABLE

When to Use EPF$RUN

You use EPF$RUN to invoke a program EPF. As with CP$, you pass the
command line to the target program, but no command preprocessing is
performed on the command line. Therefore, use EPF$RUN when you 6b not
want any changes to be made to the command line being passed.

EPF$RUN handles all of the tasks needed to execute a program EPF,
including mapping the EPF to memory, allocating the linkage area,
initializing the linkage area, and optionally removing the EPF from
memory when the invocation has been completed.

When to Use EPF$INVK

You use EPF$RUN to invoke a program EPF that has already been mapped to
memory, allocated and initialized. As with CP$, you pass the command
line to the target program, but no command preprocessing is performed
on the command line. Therefore, use EPF$INVK when you do not want any
changes to be made to the command line being passed.

The advantage of using EPF$INVK over EPF$RUN is that you have more
control over the phases of EPF execution. However, you must call
several other subroutines, described in this chapter, to map the EPF to
memory, allocate the linkage area, initialize the linkage area, and
after invocation to remove the EPF from memory.

When to Use FRE$RA

You use the FRE$RA subroutine after using CP$, EPF$RUN, or EPF$INVK to
invoke a function only if the returned function pointer is not a null
pointer (segment number 7777). Your program should call FRE$RA
sometime after it finishes using the returned function value; this may
be after it makes its own copy of the value, or after it finishes
analyzing the value. If you have used EPF$INVK to invoke the function,
it is not important whether your program calls FRE$RA before or after
calling EPF$DEL to remove the EPF.

C

V/^%.

Preliminary Release 19-8 First Edition

Invoking Programs From Within Programs

TOE CP$ SUBROUTINE

There are two ways of using CP$:

• Invoking commands or programs

• Invoking functions

The calling sequence for CP$ has six arguments. When not invoking a
function, you may wish to pass only three arguments; the remaining
three arguments are assigned default values before being passed to the
PRIMDS command processor, STD$CP.

Figure 19-1 illustrates the calling sequence for CP$. The next two
sections describe how to use CP$ to invoke a command, program, or
function.

Using CP$ to Invoke a Command or Program

To use the CP$ subroutine to invoke an internal PRIMDS command or a
program, rather than a function, you typically need to supply only the
first three arguments — command-line, code, and severity-code — of
the calling sequence illustrated in Figure 19-1. If you wish to pass a
pointer to local CPL variables, then you must supply five or six
arguments in the calling sequence to include the cpl-local-vars-ptr
argument.

Before calling CP$, your program should init ial ize the severity-code
argument to 0, in case i t i s not set by the command or program being
invoked.

When your program calls CP$, the command processor attempts to execute
the command passed in command-line. If i t fa i l s to begin execution, a
standard PRINDS error code i s returned in code. If i t succeeds in
executing the command, 0 i s returned in code, and the status of the
command i tse l f i s returned in severity-code.

Ultimately, when the program you invoke via a call to CP$ i s a program
EPF, the severity-code argument to CP$ corresponds to and i s set from
the severity-code argument in the calling sequence for a program EPF,
described in Chapter 18? CPL programs set this value ty issuing a
&RETURN directive, and static-mode programs set this value by calling
the SETRC$ subroutine.

Note

The returned value of severity-code i s undefined i f the
returned value of code i s nonzero.

First Edition 19-9 Preliminary Release

Advanced Programmer's Guide

UMOW q. GmmwU, P ^ j ^ ^ or FvActJoo

STftjNG

ff.'i

f »1* A 9U«vcfcW C«JI

£s0-. £vrtk*te. Variolic lf*KfcV*&Wfc*

fWferio local

r CPLVWj<xUea,or

PTfc

/ 4 >l 1
* * t

HALF

iwr
-J

HALF
INT

J -> Uoked

r
P
X

06teniofl!\

4

4
STfti/C

Calling Sequence of CP$
Figure 19-1

Preliminary Release 19-10 First Edition

Invoking Programs From Within Programs

The Command Line; In command-line, simply pass the command line that
you would type as a user invoking the command. The PRIMPS Commands
Reference Guide contains information on command formats. For example,
to assign a magnetic tape drive for use by a running program, you might
have your program call CP$ with the command line:

ASSIGN MTO -WATT

The RESUME command is a special case, because it is an internal command
that runs an external program. Use the RESUME command to invoke a
program via CP$. For example, to run a program, you might have your
program call CP$ with the command line:

RESUME MYPROG MEMO.03/08/05

Unless you place a tilde in front of the command line, CP$ performs
certain kinds of command preprocessing on command-line before actually
invoking the internal command (although it never modifies command-line
itself). First, if the command line contains one or more unquoted
command separator characters (;), CP$ splits up the command line into
several separately handled command lines.

Then, unless inhibited ty the second bit of flags, CP$ resolves command
function references and variable references. Subsequent command
preprocessing depends on the command or program being invoked; for
example, ATTACH does not accept wildcards, but LIST_QUOTA does. See
the PRIMPS Commands Reference Guids for information on command
preprocessing support by Prime commands; use the LIST_EPF
-GOMMAND_PROCESSING command to determine what kind of command
preprocessing is performed for a particular program EPF being invoked.

Note

Placing a tilde (~) in front of the command line as passed to
CP$ has the effect of preventing all forms of command
preprocessing. Therefore, calling CP$ with the command line

"SET__VAR .FOO %OPTE)N% is an option; [SETJL] is a function.

causes the global variable .FOO to be set to exactly the string
shown. Without the tilde (~), the variable %OPTION% and
command function reference [SETJL] would be evaluated, and the
results substituted in the command line (assuming the variable
and function references succeeded). In addition, the semicolon
after "option" would be treated as a command separator.

First Edition 19-11 Preliminary Release

Advanced Programmer's Guide

The Error Code; The code argument, returned by CP$, indicates the
degree of success encountered by the command processor's attempt to
execute the command. For example, if the command is not found, the
error code e$fntf (Not found) is returned in code.

Any nonzero value returned in code indicates that all other output
arguments have undefined values, because they all depend upon the
successful invocation of the command.

See the section entitled Error Codes From CP$, later in this chapter,
for a partial list of error codes.

The Severity Code; The severity-code argument, returned by the invoked
command via the command processor and CP$, indicate the degree of
success reported by the invoked command. For example, if you invoke
the ATTACH command to attach to a nonexistant subdirectory, the error
code e$fntf (Not found) is returned in code.

Note

The RESUME command i s handled by the command processor in a
special way. The target of the RESUME command i s the program
to be invoked. If the target program is not found, the error
code i s returned in code, not severity-code as for other
commands (such as ATTACH, COPY, and so on). This allows the
calling program to distinguish between a missing program and a
program that cannot find the target specified on i t s command
line.

The Function-Call Bit; The f irst bit of the flags argument specifies
whether the call to CP$ i s to invoke a function (such as GVPATH or a
user-written function) or not. If flags i s not supplied in the calling
sequence, the function-call bit defaults to 0, meaning that a function
invocation i s not being made. If flags i s supplied, set this bit to 0
to indicate that you are invoking a command or program rather than a
function. (The use of CP$ to invoke a function i s described in the
next section.)

The Inhibit-Evaluation Bit; The second bit of the flags argument
specifies whether command function references and variable references
in the command line are to be evaluated. If flags i s not supplied in
the calling sequence, the inhibit-evaluation bit defaults to 0, meaning
that such references are to be evaluated. If flags i s supplied, set
this bit to 0 if you wish such references to be evaluated, or set this
bit to 1 if you wish such references to not be evaluated and instead
passed to the target program.

The CPL Local Variables Pointer; The cpl-local-vars-ptr argument
provides the necessary "toehold" for the target command or program to

Preliminary Release 19-12 First Edition

Invoking Programs From Within Programs

set CPL variables local to the procedure that invoked your program.
Typically, you either do not supply this argument or you supply the
null pointer (NULL(), which i s segment 7777 offset 0) . If you do not
pass this argument, CP$ substitutes the null pointer when calling the
PRIMDS command processor, OTD$CP.

If your program may be invoked by a CPL program, and i f i t i s using CP$
to invoke a program that may need to set one or more CPL variables
local to the invoking CPL program, then your program should pass in
cpl-local-vars-ptr the corresponding pointer passed to i t s main
entrypoint in the command-information structure of the program EPF
calling sequence. (See Chapter 18 for more information on the
command-information structure.)

The Returned Function Value Pointer; The rtn-fcn-ptr argument i s not
used when invoking a comnand or program. It i s used only when invoking
a function, that i s , when bit 1 of the flags argument i s set to 1, as
described in the next section.

Using CP$ to Invoke a Function

The CP$ subroutine may be used to invoke a comnand function that i s
either an internal PRIMDS command function, such as DATE and GVPATfl, or
a user-^written comnand function, written in CPL or as a program EPF.
Whether the command function being invoked i s a Prime-supplied comnand
function or a user-written comnand function, your program calls CP$ in
the same way.

To use the CP$ subroutine to invoke a function, have your program pass
a l l s ix arguments to CP$ as illustrated in Figure 19-1 earlier in this
chapter.

Before calling CP$, your program should ini t ia l ize the severity-code
argument to 0 and the rtn-fcn-ptr to the null pointer (NDLL() in
PL1/G), in case these arguments are not set by the function being
invoked.

When your program cal ls CP$, the comnand processor attempts to execute
the command passed in command-line. If i t fa i l s to begin execution, a
standard PRIMDS error code i s returned in code. If i t succeeds in
executing the command, 0 i s returned in code, the status of the command
i tse l f i s returned in severity-code, and a pointer to the returned text
string structure i s returned in rtn-fcn-ptr.

Ultimately, when the program you invoke via a call to CP$ i s a program
EPF, the rtn-fcn-ptr argument to CP$ corresponds to the rtn-fcn-ptr
argument Iri the calling sequence for a program EPF, described in
Chapter 18; CPL programs set this value fcy issuing a &RESULT
directive.

First Edition 19-13 Preliminary Release

Advanced Programmer's Guide .

C Notes

1: The returned values of severity-code and rtn-fcn-ptr are
undefined i f the returned value of code i s nonzero.

2: When invoking a command function, no wil dear ding,
i terat ion, or treewalking i s performed. In addition, the
command separator character, the semicolon (;) i s not
honored — i t i s treated as any other character.

The Command Line; In command-line, use the RESUME command, or the
command name i t s e l f , just as you would when invoking a command or
program. Do not enclose the command l ine in square brackets ([]) as
you would in a CPL program.

For example, to determine the user's abbreviation f i l e , ca l l CP$ with
the command l ine :

ABBREV -STATUS

The pathname of the abbreviation f i l e , -OFF, or both i s returned in the
structure pointed t o by rtn-fcn-ptr, as described below.

To invoke a user-written command function, you might have your program (/ ^
c a l l CP$ with the following command l ine : /

RESUME PROGRAMS >GETLREOORD 1154 -DATABASE PAYROLL

Again, the information i s returned in a structure pointed t o by
rtn-fcn-ptr.

Unless you place a tilde in front of the command line or set the second \
bit of flags to 1, CP$ resolves (nested) command function references
and variable references.

The Error Code: The code argument, returned by CP$, has the same
meaning for Function advocation as for command or program invocation,
described earlier in this chapter.

The Severity Code: The severity-code argument, returned by the invoked
function via the command processor and CP$, has the same meaning for
function invocation as for command or program invocation, described
earlier in this chapter.

The Function-Call Bit: The first bit of the flags argument specifies
whether the call to CP$ i s to invoke a function (such as GVPATH or a

Preliminary Release 19-14 First Edition

Invoking Programs Prom Within Programs

r user-written function) or not. Set this bit to 1 to indicate a

function invocation.

The Irihibit-Evaluation Bit: The second bit of the flags argument has
the same meaning for function invocation as for command or program
invocation, as described earlier in this chapter.

The CPL Local Variables Pointer: The cpl-local-vars-ptr argument has
the same meaning for function invocation as for command or program
invocation, as described earlier in this chapter.

The Returned Function Value Pointer: The rtn-fcn-ptr argument contains
a pointer to the returned function value when CP$ returns, or the null
pointer i f no function value has been returned. Actually, rtn-fcn-ptr
points to a structure that contains the returned value, as illustrated
in Figure 19-1.

Note

If the invoked command did not return a value, then rtn-fcn-ptr
may not have modified. Therefore, set i t to the null pointer
before calling CP$, and check i t after CP$ returns to make
certain that a result has been returned.

In PL/1, the declaration of the returned function value structure i s :

del 1 rtrufunction_structure based (rtn-fcn-ptr),
2 version fixed bin(15),
2 text_string char(32766) var;

If version does not contain 0, do not attempt to use text„string,
because a nonzero version indicates a new version of the returned
structure. However, version should contain 0, and text_string should
contain the returned text string.

After using the returned text string, your program should free the
returned text string structure to the pool of available memory. Use
the FRE$RA subroutine to do this . FRE$RA i s described later in this
chapter.

If your program i s written in FORTRAN, access to the returned function
value i s difficult. Here i s a programming discipline that allows a
FORERAN program to copy the returned function value, pointed to by an
INTBGER*4 pointer variable named RFNPTR, into an INTBGER*2 array of

r characters named REJFCN and a length variable named RTNLEN. The

maximum number of characters that can be held by RTNFCN i s set in a
parameter named KTNMAX.

First Edition 19-15 Preliminary Release

Advanced Programmer's Guide

INTBGER*2 GCHAR,IXS,IXD,KENFCN(512) , RTNLEN,RTNMAX
INTEGER*4 RFCPTR

C
PARAMETER RTNMAX=1024

^ • • •
C . . . CALL CP$ HERE, check e r r o r code
V» • • •

C
C Check if the returned pointer is the null pointer.
C

IF {AND (RPCPTR,: 17760 0000) .NE.: 17760 000) GOTO 98710
C
C Null pointer, assume zero-length result.
C

RTNLEN=0
GO TO 98800 /* Do not call FRE$RA with a null pointer!

C
C Have a pointer, see if version 0.
C
98710 IXS-0 /* Source string index.

IF («3IAR(RFNPTR,IXS)H<3CHAR(RFNPrR,IXS).EQ.0) GOTO 98720
C
C Not version 0, unknown version, assume null value.
C

RTNLEN=0
GO TO 98790 /* Do call FRE$RA to deallocate the structure.

C
C Get length of returned function value in RTNLEN.
C
98720 FTNLEN=l^(GaiAR(RFNEm,IXS),8)-K3CHAR(RFNPTR,IXS)
C
C Now, IXS should be 4 which i s the beginning of the value i t s e l f .
C Copy the value in to RTNFCN unt i l the end of the source or the end
C of the des t ina t ion i s reached.
C

IF (RTNLEN.EQ.0) GO TO 98790 / * Null value!
C

IXD=0 / * Destination s t r i ng index.
C
C Loop un t i l s t r i n g copied.
C
98730 CALL SCHAR(LOC(RTNFCN) ,IXD,GCHAR(RFNPTR,IXS))

IF (IXS.LT.RTNLEN.AND.IXD.LT.RTNMAX) GO TO 98730
C
C Now free the s t ruc tu re .
C
98790 CALL FRE$RA(RFNPTR)
C
C Done!
C
98800 CONTINUE

Preliminary Release 19-16 F i r s t Edit ion

V-"*^

Invoking Programs From Within Programs

Error Codes From CP$

An output argument, code, informs the calling program of the success or
failure of the operation. This argument is a HALF IMP value. Symbols
are provided to allow PL1/G, FORTRAN, Pascal, and PMA programs to
substitute mnemonic keywords for numeric values.

If code is 0, the operation was entirely successful. Otherwise, code
has one of many values. Typical values and their meanings follow. Not
all possible error codes are listed; for example, PRlMENET-related
error codes such as E$RLEN (The remote line is down) may be returned by
CP$, but are not listed.

Note

When you use CP$ to invoke a program EPF, either via the RESUME
command or by specifying a program EPF in CMDNCO, an error code
returned by the EPF$RUN subroutine is returned by CP$.
Therefore, consult the list of error codes returned by EPF$RUN,
later in this chapter, for information on additional error
codes returnable by CP§.

Keyword Value

<ok> 0

E$EOF 1

E$FIUS 3

E$NRIT 10

E$DIRE 14

E$FNTF 15

Meaning

The operation was successful.

End of file. Typically, this error
indicates an attempt to invoke a text file
(such as a CPL file) as a static-mode
program. Alternatively, this error
indicates a file that has been truncated by
FIKJ3ESK daring system maintenance
procedures. In the latter case, you must
replace the program with a backup copy.

File in use. Indicates an attempt to run a
program that is open for writing.

Insufficient access rights,
have access to the program.

You do not

Operation illegal on directory. Typically,
this error indicates an attempt to invoke a
segment directory, such as a .SEG file,
with the RESUME command. Alternatively,
this error indicates an attempt to invoke a
file directory.

Not found. If the command is the RESUME
command, the target program could not be
found. Otherwise, the command is not an
internal command, and a program with the

First Edition 19-17 Preliminary Release

Advanced Programmer's Guide

E$BNAM

E$ITRE

E$CMND

E$BARG

E$NDAM

E$BVER

17

57

68

71

109

158

same name could not be found in CMDNCO.

Illegal name. The RESUME command specifies
a filename not conforming to filename
syntax rules.

Illegal treename. The RESUME command
specifies a pathname not conforming to
pathname syntax rules.

Bad command format. The command name, the
first token on the command line, is more
than 32 characters long or does not conform
to filename syntax rules.

Invalid argument to command. The RESUME
command is not followed by a program name.

Not a DAM file. The target program is a
.RUN file, indicating an EPF, but is not a
DAM file. The fault is in the installation
of the program being invoked.

Incorrect version number. Typically, this
error means that the command function
invoked by the call to CP$ returned a
structure containing an invalid version
number. Alternatively, this error means
that the target EPF contains an invalid
version number. In both cases, the fault
is in the command function, not the calling
program. The command function is an EPF,
because a CPL program should never cause
this error. If the command function is in
fact a CPL program, contact your Customer
Support Center.

E$NINF 159 NO information,
the program.

You do not have access to

*** THERE SHOULD BE ONE OR TWO ERROR CODES INDICATING THAT A FUNCTION
REFERENCE OR VARIABLE REFERENCE IN THE COMMAND LINE WAS INVALID.
CURRENTLY RETURNS "REMOTE LINE DOWN" OR "BAD STARTUP" CODES FOR BAD
VARIABLE REFERENCES, WHICH COME FROM CPL ERROR CODES. STD$CP SB3ULD
TRANSLATE ANY ERRORS FROM EVAL^A INTO A PARTICULfiR ERROR CODE. ***

THE EPF$RUN SUBROUTINE

The EPF$RUN subrou t ine i s used i n t h e fo l lowing manner:

1 . The c a l l i n g program opens t h e program EPF f i l e t o be invoked.

P re l imina ry Release 19-18 F i r s t E d i t i o n

Invoking Programs From Within Programs

2. The calling program calls EPF$RUN, passing the file unit number
of the opened program EPF file.

3. The calling program closes the program EPF.

4. After the EPF$RUN subroutine completes, the calling program
checks the returned error code to determine whether the program
EPF was successfully invoked by EPF$RUN.

5. If the error code from EPF$RUN is 0, the calling program uses
the information returned fcy EPF$RUN to determine whether the
program EPF completed successfully or unsuccessfully, and
optionally to access the returned text string (if the program
EPF was invoked as a command function).

6. If the error code from EPF$RUN is 0, and the calling program
invoked the program EPF as a command function, the calling
program uses the FRE$RA subroutine to return the memory used to
store the returned text string to the free memory pool.

These steps are described in detail below. Following the steps, a
listing of error codes that may be returned by EPF$RUN is presented.

Step 1: Open the EPF File

Your program must first open the target program EPF file for VMFA-read
before calling EPF$RUN. VMFA stands for Virtual Memory File Access, a
mechanism that provides efficient data retrieval from disk storage by
mapping disk records into memory via the virtual memory mechanism.
PRIMDS implements a limited form of VMFA called read-only VMFA, and
supports this mechanism for use only by the EPF mechanism.

To open the target program EPF file for VMFA-read, use the k$vmr key
when you invoke the SRCH$$, TSRC$$, or SRSFX$ subroutines. For
example, a PLl/G program might use the following call:

call srsfx$(k$vmr+k$getu, 'MSCEPF' ,unit,type,l,' .RUN1 ,basename,i,
code);

A FORTRAN program might use the following statement:

CALL SRCH$$(K$VMR+K$GETa, 'MY^EPF.HJN' ,10,UNIT,TYPE,COEE)

Typically, you add k$getu to the k$vmr key, to specify that a free file
unit is to be found by PRIMDS. If you do, the file unit number used is
returned in unit. If you do not add k$qetu, you must pass a valid file
unit number in unit.

First Edition 19-19 Preliminary Release

Advanced Programmer's Guide
(

If code is 0 when SRSFX$, TSRC$$, or SRCH$$ returns, the file is open (/
on the indicated file unit. Otherwise, the file is not open, and code
contains an error code indicating the problem. If an error occurred,
EPF$RUN cannot be called to invoke the EPF, because it is not open.

See the Subroutines Reference Guide for details on the SRSFX$, TSRC$$,
and SRCH$$ subroutines. ™ ~~~

Step 2: Invoke EPF$RUN

After your program has opened the target program EPF file, it calls
EPF$RUN. Figure 19-2 illustrates the calling sequence for the EPF$RUN
subroutine.

Although the calling sequence contains eight arguments, there are two
cases in which only the first three arguments need be passed. The
other five arguments are not used by EPF$RUN or by EPF$INVK (which
EPF$RUN calls to invoke the EPF) — they are simply passed to the main
entrypoint of the program EPF, corresponding to the five arguments in
the complete calling sequence of a program EPF as described in Chapter
18. The two cases in which only the first three arguments to EPF$RUN
need be passed are:

• When the k$restore„only value for key is used, in which case the
target EPF is not actually invoked

• When the main entrypoint of the target EPF is known to accept no
arguments

The arguments for the EPF$RUN subroutine are described below.

The Key; For key, specify k$invk, k$invK_del, or k$restore_pnly. Both
kjinvk and k$invKldel cause the target EPF to be invoked; however,
k?inyk causes tne program EPF to be left in the EPF cache after it
completes, whereas k$invk_.6el causes the program EPF to be removed from
the EPF cache after it completes.

The k$restore_only key causes all activities up to, but not including,
the invocation of the program EPF to be performed; use tiie EPF$INVK
and EPF$DEL subroutines, described later in this chapter, to complete
the process of executing a program EPF.

The EPF cache is a mechanism in PRIflDS to optimize frequent reuse of
EPFs. Therefore, use the k$invk key if the target program EPF may be
invoked more than once by the program or user. Use the k$invK_del key
if you are certain that the invocation of the target program EPF by the
calling program will be the last such invocation by that user for some
time.

Preliminary Release 19-20 First Edition

Invoking Programs From Within Programs

K\Ji * <K ^ogroun €Pf

i 1
M l * KALf

I i

GoMttA«\4 U*Ae

C*«/nand

f"£Serve.<

STftuc

I
i.

8 IT

^ I - A F W & A G I I

Ftfuu
INT

Id

fttLF

TO*

L4* <-*

HAUf

Wife! Pfoym^

1

i
fre.

I
STRVc

0 Afensio/tV

fcefc/ooed Value

STRING,

Calling Sequence of EPF$PDN
Figure 19-2

First Edition 19-21 Preliminary Release

Advanced Programmer's Guide ,

The File Unit: Pass the f i l e unit on which the target program EPP i s (/**
open for VMFA-read (from Step 1) in unit. v / j

The Error Code: When EPF$RUN returns, the value in code indicates the
success or failure of the operation. If code i s 0, the target program
EPP was successfully invoked, although i t may not have completed
successfully.

If code i s not zero, an error occurred while trying to invoke the EPF.
In this case, your program should display an error message (using the
ERRPR$ subroutine) and perhaps log the error; however, your program
should not make use of any other information returned by EPF$RUN, such
as severity-code or rtn-fcn-ptr, because these variables are assigned
only as a result of successful invocation of the EPF.

See the section entitled Error Codes From EPF$RUN, later in this (
chapter, for a partial l i s t of error codes.

The Command Line: Pass the command line containing the command
arguments for the target program EPF in command-line; i f there are no
arguments, pass the null string.

Note

Do not include the RESUME command or the program name in the
command-line argument. Otherwise, the target program EPF
treats the RESUME command as the first token in the command
line, and the pathname of the program as the second token,
rather than treating the information following RESUME
program-name as the command line.

The Severity Code: When the EPF$RUN subroutine returns, if code i s 0,
severity-code contains the severity code of the invoked EPF. The
interpretation of severity-code i s strictly dependent on the program
EPF itself; however, i t i s typically set and interpreted as follows:

Value Meaning

0 Program completed successfully

< 0 Successful completion, defined operation
not performed (warning)

> 0 Program did not complete successfully (error)

(

(

Preliminary Release 19-22 First Edition

Invoking Programs From Within Programs

Note

Because severity-code may not be set by the target program EPPf
preset i t to 0 before calling EPF$RUN, so that the default
value indicates successful completion. This i s particularly
important when invoicing a program that does not use i t s command
line to receive information, and hence may have a main
entrypoint that does not accept any arguments.

The Command Information: There are currently two versions of the
command information structure that your program can pass. Both of
these versions are illustrated in Chapter 18. Typically, you can pass
a version 0 structure, which contains only the command name and the
version number. If your program must pass a pointer to local CPL
variables, or i f your program performs command preprocessing such as
wildcards, i t must pass a version 1 structure.

In PL1/G, version 0 the command-information structure i s declared as
follows:

del 1 commanc|_state static,
2 commancLname char(32) var i n i t (") ,
2 version fixed bin (15) init(O);

In PL1/G, version 1 the command-information structure i s declared as
follows:

del 1 commandLstate static,
2 commancLname char(32) var in i t (M)r
2 version fixed bin (15) i n i t (l) ,
2 cpl_locaIwvars_ptr ptr init(null()) ,
2 cp_iter_info, /* Command iteration info. */

3 modLafter_date fixed bin (31) init(O),
3 modLbefore_date fixed bin(31) init(O),
3 bR_after_date fixed bin (31) init(O),
3 blc_before_date fixed bin (31) init(O),
3 type_dir bit(l) in i tCl 'b) ,
3 type_segdir bit(l) in i tCl 'b) ,
3 type_file bit(l) in i tCl 'b) ,
3 type_acat bit(l) in i tCl 'b) ,
3 type_j:bf bit(l) initCO'b),
3 mbzl bit(l l) init(*00000000000'b),
3 verify_jsw bit(1) init('0'b) ,
3 botupjssw bit(l) initCO'b),
3 mbz2 bit(14) init('00000000000000'b),
3 walK_from fixed bin (15) init (2),
3 walH_to fixed bin (15) init (999),

r 3 in_iteration bit(l) init('O'b),
3 in_wildcard bit(l) init('O'b),
3 in_tr eewal k bit (1) init C 0' b),

First Edition 19-23 Preliminary Release

Advanced Programmer's Guide

3 mbz3 bit(13) init('0000000000000'b); (

Before calling EPF$RUN, set commancLname to the name of the target
program EPF you are invoking (32 characters maximum). If you know the
name of the program while writing the program, you may place the name
in the INITIAL attribute for the declaration of commancUiame. If/ in
Step 1, your program called SRSFX$, then store the basename variable,
returned by SRSFX$, in commancLname. commancLname should not contain
the .PUN suffix of the program. The degree of flexibility you have in
setting commancLname depends solely upon the program EPP you are
invoking; therefore, consult the specification for the appropriate
program.

The INITIAL attributes used above indicate the default settings used by
PRIMDS. If your program is performing wildcard selection, matching,
treewalking, and so on, you may wish to have your program modify
cp_j.ter_.info appropriately.

If the program being invoked references CPL variables local to the CPL
program that invoked it (and therefore the CPL program that invoked
your program EPP), store the pointer passed to the main entrypoint of
your program EPF (in the command-information structure argument) into
cpl_J.ocal_vars_ptr before calling EPF$RDN. See Chapter 18 for more
information on the command-information structure passed to program
EPFs.

Function Call: The function-call bit indicates to the target EPF
whether it should return a function value. If you do not intend to use
the target program EPF as a command function, set this bit to 0. If
you do intend to use the target program EPF as a command function, set
this bit to 1.

The Returned Function Value Pointer: The rtn-fcn-ptr variable has the
same meaning for EPF$FUN as it does for CP? when used to invoke a
function, as described earlier in this chapter.

The EPF Id: The returned value of EPF$FUN, when invoked as a function
that returns a FULL INT value, is an internal PRIMDS identifier of the
EPF that is valid only if code is 0 and your program did not supply a
key value of k$invK__del. You may use this identifier in subsequent
calls to EPFCPF, EPFINVK, and EPF$DEL, which are described below.

You do not need to declare EPF$FDN as a function if you do not intend
to use the returned EPF identifier.

Preliminary Release 19-24 First Edition

http://cp_j.ter_.info

Invoking Programs From Within Programs

Step 3; Close the EPF File

After EPF$FDN returns, close the f i l e unit on which the target program
EPF i s open by calling SRCH$$. For example:

call clo$fu(unit fi); / * Don't overwrite CODE! */

Note

It i s not necessary to repeatedly open and close a program EPF
f i l e when repeated invocations of the EPF are to be performed.
The program EPF f i l e can be opened once, invoked several times
via EPFSKJN, and then closed once.

Step 4; Check the EPF$RUN Error Code

After closing the EPF f i l e , check the returned code value. If code i s
0, proceed to step 4. Otherwise, code contains a standard PREMDS error
code; use ERRPR$ or ERTXT$ to report the error to the user or to log
the error. A l ist ing of possible error codes that may be returned fcy
EPF$RUN i s provided later in this chapter, following the description of
Step 6.

Step 5: Check the Returned Command Status

After you check the returned error code, check the returned
severity-code value to determine whether the target program EPF
completed successfully. The exact meaning of severity-code i s defined
by the target program EPF. Typically, if severity-code i s 0, the
program completed successfully; i f severity-code i s l ess than 0, the
program encountered problems or unusual conditions but probably
completed successfully; if severity-code i s greater than 0, the
program completed unsuccessfully.

Step 6: Use and Free the Returned Function Value Structure

If you invoked the target program EPF as a function, if code was set to
0 by EPF$RUN, and i f rtn-fcn-ptr was not set to the null pointer by the
target program EPF, your program should f irst use (such as by copying)
the returned function value and then return i t s structure to the pool
of available memory. Use FRE$RA to do this , as described later in this
chapter.

First Edition 19-25 Preliminary Release

Advanced Programmer's Guide

Error Codes From EPF$FDN

An output argument, code, informs the calling program of the success or
failure of the operation. This argument is a HALF INT variable.
Symbols are provided to allow PL1/G, FORTRAN, Pascal, and PMA programs
to substitute mnemonic keywords for numeric values.

If code is 0, the operation was entirely successful. Otherwise, code
has one of many values. Typical values and their meanings follow. Not
all possible error codes are listed; for example, PRIMENET-related
error codes such as E$RLEN (The remote line is down) may be returned by
EPF$RUN, but are not listed.

Note

When you use EPF$RUN which itself invokes other EPF$
subroutines, an error code returned by any of those subroutines
is returned by EPF$RUN. Therefore, consult the lists of error
codes returned by EPFMAP, EPFALLC, EPF$INIT, EPF$INVK, and
EPF$DEL, later in this chapter, for information on additional
error codes returnable by EPF$RUN.

Keyword Value

<ok> 0

E$EOF 1

E$UN0P 3

E$BKEY 28

E$BUNT 29

E$RO0M 55

E$NMT5 106

Meaning

The operation was successful.

End of file. This error indicates a file
that has been truncated by FIXJESK during
system maintenance procedures. You must
replace the program with a backup copy.

Unit not open. There is no file open on
unit. You must open the target program EPF

EPF$RUN for VMFA-read before
invoke the EPF.

calling

Bad key in cal l . You are not
valid key value to EPF$BDN.

Bad unit number. You are not
valid unit value to EPF$RUN.

to

passing a

passing a

You cannot invoke the EPF because
dynamic storage

internal EPF
LIST_EPF and

remove inactive
dynamic storage.

No room.
there is insufficient
available to allocate
information. Use the
REMOVEJEPF commands to
EPFs, thereby freeing up

No more temp segments. You cannot invoke
the EPF because you would exceed your limit
on dynamic segments. This limit is

Preliminary Release 19-26 First Edition

Invoking Programs From Within Programs

displayed using the LIST_JiIMnS command.
You should use the LIST_EPF and REM3VELEPF
commands to remove inactive EPFs, thereby
freeing up dynamic segments, and attempt to
run your program again. If you need more
dynamic segments, contact your System
Administrator.

E$NMVS 107 No more VMFA segments. You cannot invoke
the EPF because there are insufficient
segments. The condition may be temporary,
in which case an attempt to invoke the
target EPF later might succeed. If the
condition recurs, consult your System
Administrator about increasing the number
of VMFA segments on your system (by
changing the NVMFS configuration directive
in the system startup file).

E$BVER 158 Incorrect version number. Typically, this
error means that the function invoked by
the call to EPF$RUN returned a structure
containing an invalid version number.
Alternatively, this error means that the
version number of the EPF itself is
invalid. In both cases, the fault is in
the target EPF, not the calling program.

THE EPF$INVK SUBROUTINE

The EPF$INVK subroutine provides a more controlled, step-by-step
interface to the invocation of a program EPF than does the EPF$FDN
subroutine. In most ways, however, the use of EPF$INVK is identical to
the use of EPF$RDN. lhis section concentrates primarily on the
differences between the use of these two subroutines.

The EPF$INVK subroutine is used in the following manner:

1. The calling program opens the program EPF file to be invoked.

2. The calling program calls EPF$MAP to map the EPF to memory,
passing the file unit number of the opened program EPF file
and obtaining an EPF identifier for use with the other EPF$
subroutines (except for EPF$KJN, described above).

3. The calling program closes the program EPF.

4. The calling program optionally calls EPF$CPF to obtain
information on the EPF, such as its selection of command
processing features, passing the EPF identifier.

First Edition 19-27 Preliminary Release

Advanced Programmer's Guide
(

5. The calling program calls EPF$ALLC to allocate the linkage C*
areas for the EPP.

6. The calling program calls EPF$INIT to initialize the linkage
areas for the EPF.

7. The calling program calls EPF$INVK to invoke the program EPF.

8. After the EPF$INVK subroutine completes, the calling program
checks the returned error code to determine whether the
program EPF was successfully invoked by EPF$INVK.

9. If the error code from EPF$INVK is 0, the calling program uses
the information returned by EPF$INVK to determine whether the
program EPF completed successfully or unsuccessfully, and
optionally to access the returned text string (if the program /
EPF was invoked as a function). V

10. If the error code from EPF$INVK is 0, and the calling program
invoked the program EPP as a function, the calling program
uses the FRE$RA subroutine to return the memory used to store
the returned text string to the free memory pool.

11. The calling program calls EPF$DEL to remove the program EPF
from memory.

Some of these steps are described in the section entitled THE EPF$RUN
SUBROUTINE, earlier in this chapter; Steps 1 and 3 correspond to tEe
same-numbered steps, while Steps 8 through 10 correspond to Steps 4
through 6 in the aforementioned section. These steps are not described
below.

Step 2 and Steps 4 through 6 correspond to calling the EPF$RUN
subroutine with a key value of k$restore_jonly as described earlier in
this chapter. You may choose to use EPF$RUN rather than EPF$MAP,
EPF$ALI£, and EPP$INIT if that is more appropriate for your (
application. After calling EPF$RUN with the k$restore__pnly key, close
the program EPF file as described in Step 3, then continue with Step 7
of the above procedure to invoke the EPF.

For repeated invocations of the same program EPF, repeat Steps 6.
through 10. It is because avoiding Steps 1 through 5 and Step 11 for
subsequent invocations of an EPF saves time that the use of EPF$INVK is
sometimes preferred over the use of EPF$RUN.

Steps peculiar to the use of EPF$INVK are described in detail below.

Step 2; Invoke EPF$MAP

The calling program calls EPF$MAP to map the EPF to memory, passing the
file unit number of the opened program EPF file and obtaining an EPP
identifier for use with the other EPF$ subroutines (except for EPF$RUN,

Preliminary Release 19-28 First Edition

Invoking Programs From Within Programs

described above). This corresponds to Phase 4 of the l i f e of an EPF,
as described in Chapter 1.

Figure 19-3 illustrates the calling sequence for the EPF$MAP
subroutine.

The EPF$MAP subroutine may be used to map either a program EPF or a
library EPF. Although this chapter does not describe the use of EPF$
subroutines on library EPFs, most of them work identically with library
EPFs as they do with program EPFs. The exception i s EPF$INVKr which
supports only the invocation of program EPFs.

The arguments in the EPF$MAP calling sequence are described next.

The Key; Specify either k$any or k$copy for key. (The value k$dbg i s
used only by EBG, Prime's source-level debugger. You may use i t , but
i t only increases the amount of virtual memory used by an EPF compiled
with the -DEBUG option, without providing any additional
functionality.)

The k$any key i s most often used, because i t specifies that the EPF i s
to be mapped to any available segments. The procedure (PROC) segnents
of a mapped EPF cannot be modified by a user, because they may be
shared between users by PRIMDS.

0^- ttie k$copy key i s used when the invoking program intends to modify the
^ procedure (PROC) segments of the EPF. Instead of mapping the procedure

segments to memory, k$copy causes EPF$MAP to copy their contents into
memory as for static-mode programs. Use the k$copy key i f you plan to
set breakpoints in an EPF via VPSD, for example.

The File Unit Number; Pass the f i l e unit number of the EPF in unit.
This i s the unit on which your program opened the EPF runfile for
VMFA-read in Step 1. Once you have called EPF$MAP, you can close this
unit.

The Segment Access; Pass k$rx in access. This represents the desired
segment access. Only one other value i s allowed in access, the value
k$r. However, both k$rx and k$r result in the same effective segment
access — read and execute access. Therefore, always use k$rx access
in case k$r i s someday redefined to mean something different (such as
read-only access).

The Error Code; A standard error code i s returned in code. Possible
errors codes are summarized later in this chapter.

r The EPF Identifier; The returned FULL INT value i s an identifier of
the mapped EPF that your program passes to subsequent EPF$ subroutines
to identify the EPF.

First Edition 19-29 Preliminary Release

Advanced Programmer's Guide
(

Moip a* £PF to fle/nory

CRcofv j

1 HA* HALJ

4 J

file Omi
Number

r
UAlf
WT i

k»*x

v/^^\

£ P F#MAP (W , IMit, access, CooO

WT 'A/T

L SbMcfartf

Code

Calling Sequence of EPF$MAP
Figure 19-3

Preliminary Release 19-30 First Edition

Invoking Programs From Within Programs

Step 4; Invoke EPF$CPF (Optional)

The calling program optionally calls EPF$CPF to obtain information on
the EPF, such as i t s selection of command processing features, passing
the EPF identifier to identify the EPF.

Figure 19-4 illustrates the calling sequence of the EPF$CPF subroutine.

The epf-id and code arguments have the obvious meanings. The epf-info
structure, which may be used by your program to select valid command
processing features, has the following declaration in PI/1:

del 1 epf_info, / * EPF info data structure */
2 commancLflacp,

3 wildcards b i t (l) , /* Enable wildcards. */
3 treewalks b i t (l) , /* Enable treewalks. */
3 iteration b i t (l) , / * Enable iteration. */
3 verify b i t (l) , / * verify wildcard selections. */
3 file_types,

4 f i l e b i t (l) , /* Select f i l e s . */
4 directory b i t (l) , / * Select directories. */
4 segdir b i t (l) , / * Select segment directories. */
4 acat b i t (l) , / * Select access categories. */
4 rbf b i t (l) , / * Select RBF f i l e s . */
4 reserved bit (7), / * Ignore. */

2 name_generation_position fixed bin (15); / * Token #. */

For wildcards, treewalks, and iteration, a bit set to 1 indicates that
PRIMOS i s to perform the corresponding function. For example, if
wildcards i s ' l 'B, PRIMOS intercepts a specification of @@ and expands
the command line to several command l ines, one for each f i l e system
object in the directory (as limited by the object selection in
file__types). If wildcards i s 'O'B instead, PRIMOS passes a
specification of @@ to the program EPF without modification, and no
expansion takes place due to that specification.

The verify bit i s the default setting of the -VERIFY or -ND_VERIFY
(-VFY or -NVFY) options. When 'l'B, the default i s -VERIFY; when
'O'B, the default i s -ND_VERIFY. Actual verification takes place only
when wildcards are being processed by the command processor — that i s ,
when wildcards i s set to 'l'B and the command line contains an actual
wildcard specification.

The file_types bits indicate the default settings of the -FILE,
-SEGMEOTLPIRECTORY (-SEGDIR), -DIRECTORY (-DIR), -ACCESS_CATEGORY
(-ACAT), and -RBF options. A bit set to 'l'B indicates that the
corresponding f i l e type i s to be processed. The file_types bits are
used only during wildcard processing, as with the verify bit . For
example, if the command RESUME MYPROG XYZ i s given, MYPROG i s invoked

r for the f i l e system object named XYZ even i f XYZ i s a directory and the
directory bit i s reset to 'O'B. However, if the command RESUME MYPROG
XYZ@@ i s given (and the wildcards bit i s ' l 'B) , the XYZ directory i s

First Edition 19-31 Preliminary Release

Advanced Programmer's Guide

O l U K Worm<jrtiorv or\ EfP

EfP

1
Fuu.

EPFftcPf Ce^'4, «ff-«*£«, c o ^

-> Error
Code

Offset 1 Z- 3 H 5 < 7 5 *! ^ i i i ^ i^ ^ i s 1 /

0
i

RHS ft VL V t EI
Name Gĉ e.̂ ft-fcô n>s»tj-«A

Calling Sequence of EPP$CPF
Figure 19-4

V / * ^ i .

Preliminary Release 19-32 First Edition

Invoking Programs From Within Programs

r not se lected i f d i rectory i s 'O'B, because wildcard processing i s
taking p lace .

The name_generatiori_position var iable i s an integer t h a t speci f ies
which token following the program or command name i s t o be used as the
name generation source pa t t e rn . Normally, t h i s var iab le i s s e t t o 1 ,
meaning t h a t the f i r s t token a f te r the RESUME MYPROG tokens i s t o be
used a s the source pa t t e rn . For example, the command l i ne

RESUME MYPROG FOO BAR =

produces an ef fec t ive command l i n e of:

RESUME MYPROG EDO BAR FOO

However, if name_jgeneration_position i s 2 , the second token i s used
ins tead. For example, given the same command l i n e above, the effect ive
command l i n e produced when name_generation_position i s 2 i s :

RESUME MYPROG FOO BAR BAR

For a program EPF i n s t a l l e d in CMDNCO, the token count begins a t the
same po in t ; t h a t i s , following the program name. Therefore, the
following two command l i n e s always produce the same r e s u l t with regard
t o name generation pa t te rn processing:

MYPROG AB =

RESUME CMDNCOMYPROG A B =

Step 5 : Invoke EPF$ALLC

The ca l l ing program now c a l l s EPF$ALI£ t o a l l o c a t e the l inkage areas
for the EPF, passing the EPF i d e n t i f i e r . This s t ep corresponds t o
Phase 5 of the l i f e of an EPF.

Figure 19-5 i l l u s t r a t e s the ca l l ing sequence of the EPF$ALLC
subroutine.

The epf- id and code arguments have the usual meanings.

F i r s t Edition 19-33 Preliminary Release

Advanced Programmer's Guide

Allocate U\k*3ft Ar**s for £P?

Id 1
INT

HALF
INT

Error

Calling Sequence of EPF$ALLC
Figure 19-5

Preliminary Release 19-34 First Edition

Invoking Programs From Within Programs

Step 6: Invoke EPF$INIT

The calling program calls EPF$INIT to initialize the linkage areas for
the EPF, passing the EPF identifier. This step corresponds to Phase 6
of the life of an EPF.

Figure 19-6 illustrates the calling sequence of the EPF$INIT
subroutine.

The epf-id and code arguments have the usual meanings.

The key argument specifies whether a complete initialization is to be
performed. The first time EPF$INIT is called for an EPF that has just
had its linkage allocated via EPF$ALLC, key must be set to k$initallf
which specifies complete initialization. After calling EPF$INVK, in
the next step, a subsequent invocation of the program requires only a
call to EPF$INIT with a key of k$reinit to reinitialize only certain
portions of the linkage areas for the EPF before calling EPF$INVK
again.

Specifically, while a key of k$initall specifies complete
initialization of the linkage areas, a key of k$reinit specifies that
only faulted IPs (dynamic links) and static data are to be
reinitialized. ECBs, static IPs, and other nonfaulted IPs are not
reinitialized — once initialized, they do not need to be initialized
again unless the program modifies them during execution (which is
considered poor programming practice).

If a program being invoked by your program seems to fail in strange
ways after the first invocation, have your program use the k$initall
key exclusively to see if the problem is caused by the invoked program
— it might be modifying linkage data that should not be modified once
it has been initialized by EPF$INIT.

Step 7; Invoke EPF$INVK

The calling program calls EPF$INVK to invoke the program EPF, passing
the EPF identifier. This step corresponds to Phase 7 of the life of an
EPF.

Figure 19-7 illustrates the calling sequence for the EPF$INVK
subroutine.

The epf-id and code arguments have the usual meanings. The remaining
arguments correspond precisely to the same arguments to the EPF$RDN
subroutine, described earlier in this chapter. In fact, as with
EPF$RUN, the latter five arguments may be omitted if the main
entrypoint of the target program EPF does not accept any arguments.

First Edition 19-35 Preliminary Release

Advanced Programmer's Guide

lntbi*l;«& £4*10*3* ^ r€ f lLS ^r E P F

(

£k*ft*INlT 3 I I 14

litf "«±

£PF*JNIT (-key^ep-f-i^ codê >

tWLF

Standard
Error

Code.

Calling Sequence of EPF$INIT
Figure 19-6

Preliminary Release 19-36 First Edition

Invoking Programs From Within Programs

Invoke, a Proa ram EfF

FULL

4

_ G u n m a n Ljftft

Command
Process ing

Information

4

STRUC

4
BIT

Bit 1 p ii
| f resented | r | f rcsenr

f^Wot.fv.

f -J;Aft*&

EPFfNNVk C*pf";4> ^ ^ CoAWwd-l̂ scveriV-co<^com««J^«r©rm«^«fi//ic^«o-call, Kn-fCn-/*tr)

« * * HALP I
W T IWT PTft.

/ A
STRVc

J
SiaitfS from

Invoice Pnyf»ff»

i

Status POM

Uvo(oê ftxgf*^
J

H«lfw*J

Returned Value

Calling Sequence of EPF$INVK
Figure 19-7

First Edition 19-37 Preliminary Release

Advanced Programmer's Guide

(

Step 11: Invoke EPF$DEL (,

The c a l l i n g program c a l l s EPP$DEL to remove the program EPF from
memory, passing the EPF ident i f i er . This step corresponds t o Phase 10
of the l i f e of an EPF.

Figure 19-8 i l l u s t r a t e s the ca l l ing sequence of the EPF$DEL subroutine.

The epf - id and code arguments have the usual meanings.

If the EPF i s s t i l l in use by t h i s process, such as when a user types
Control-P while the program i s executing, then the EPF i s not removed
and an error code (e$swpr) i s returned in code.

The EPF i s not actual ly removed from the system's virtual memory i f
other users have the EPF mapped to their memory. However, i t i s
unmapped from the ca l l ing user's memory, and i s removed from the
system's virtual memory when the l a s t user unmaps i t from h i s or her
memory.

Error Codes From EPF$ Subroutines

Al l of the EPF$ subroutines may encounter errors. In addit ion, opening
a f i l e for VMFA-read may resul t in an error that pertains spec i f i ca l ly ,
to the VMFA mechanism rather than the f i l e access mechanism. An output \/^\
argument, code, informs the calling program of the success or failure
of the operation. This argument i s a HALF INT value. Symbols are
provided to allow PLl/G, FORTRAN, Pascal, and PMA programs to
substitute mnemonic keywords for numeric values.

If code i s 0, the operation was entirely successful. Otherwise, code
has one of many values. Typical values and their meanings are l i s ted
for each EPF$ subroutine. Not a l l possible error codes are listed;
for example, PRIMENET-related error codes such as E$RLEN (The remote
line i s down) may be returned by one or more of these subroutines, but
are not l isted.

Error Codes Involving the K$VMR Key; Error codes specific to opening a
f i l e for VMFA-read (using the k$vmr key) are l isted below. Other error
codes applying to opening f i les in general may also be returned.

Keyword Value Meaning

<ok> 0 The operation was successful.

E$NRIT 10 The user has insuf f ic ient access t o open
the target f i l e for VMFA-read. Currently,
Read access t o the f i l e i s required. (/

E$NDAM 109 The target object i s not a EAM f i l e ; this

Preliminary Release 19-38 First Edition
(

Invoking Programs From Within Programs

I fte^i^e an EPF fr*m flem^

EPF

1 4 1
IA/T

HALF
IWT
/ SWacd

Srror

Code.

f^ Calling Sequence of EPF$DEL
Figure 19-8

First Edition 19-39 Preliminary Release

Advanced Programmer's Guide

error code i s also returned i f an attempt
i s made to open the cache directory by
specifying the k$curr value for the
filename or by specifying a null pathname.

(

C

Error Codes From EPF$MAP: Error codes that may be returned by EPF$MAP
are:

Keyword

<ok>

E$UNOP

E$BAR

E$BKEY

E$BUNT

E$NMVS

Value

0

3

6

28

29

107

E$NMTS

E$NEftM

E$N0VA

E$BVER

108

109

110

158

E$EPFT 217

Meaning

The operation was successful.

The unit specified in unit i s not open.

An invalid segment access has been
specified in access. It must be either
k$rx or k$r.

The value of key i s invalid.

Tfte value specified in unit i s an invalid
f i l e unit number.

There are not enough VMFA segments in the
system, to accommodate the EPF. If this
errors persists, contact your System
Administrator, who may wish to increase the
number of VMFA segments on your system (via
the NVMFS configuration directive in the
system configuration f i l e) .

There are no more temporary segments
available into which the EPF procedure
segments can be copied.

The f i l e open on unit i s not a ESVM f i l e .

unit The file open on
VMFA-read. It must
k$vmr key.

_ is not
be opened

open for
using the

Invalid EPF version. The file open for
VMFA-read is either a corrupted EPF, not an
EPF, or an EPF generated by a future
revision of PRIM3S that is not supported by
the current revision of PRIMES.

The file open for VMFA-read on the file
unit is not a valid EPF. Either the file
contains a corrupted EPF or is not an EPF
at all, or the file contains an EPF
generated by a revision of PRIMDS beyond

Preliminary Release 19-40 First Edition

Invoking Programs From Within Programs

Rev. 19.4 that i s
Rev. 19.4 PRIMDS.

not recognized by

E$EPFL 222 The EPF file is too large for the current
EPF implementation. More segments are
required by the EPF than are supported by
the current revision of PRIMDS. If you are
using the -DEBUG option, recompile the
program without the option to reduce its
size. Alternatively, consider splitting
the program up into smaller pieces, such as
one program EPF and one or more library
EPFs.

Error Codes From EPF$CPF: Error codes that may be returned by EPF$CPF
are:

Keyword Value

<ok> 0

E$BPAR 6

Meaning

The operation was successful.

The epf-id passed represents an EPF that is
no longer mapped to memory.

Error Codes From EPF$ALLC: Error codes that may be returned by
EPF$ALLC are:

Keyword Value

<ok> 0

E$BPAR 6

E$BVER 158

E$EPFT 217

Meaning

The operation was successful.

The epf-id passed represents an EPF that is
no longer mapped to memory.

Invalid EPF version. The EPF is either a
corrupted EPF, not an EPF, or an EPF
generated by a future revision of PRIMDS
that is not supported by the current
revision of PRIMDS. Because this condition
is checked by EPF$MAP, this error is not
likely to occur when calling EPF$ALI£
unless it is called out of sequence.

The EPF is not a valid EPF. Either the
file contains a corrupted EPF or is not an
EPF at all, or the file contains an EPF
generated by a revision of PRIMDS beyond
Rev. 19.4 that is not recognized by
Rev. 19.4 PRIMDS. Because this condition
is checked by EPF$MAP, this error is not

First Edition 19-41 Preliminary Release

Advanced Programmer's Guide

likely to occur when calling EPF$ALLC
unless it is called out of sequence.

E$ILTD 219 The EPF contains an invalid linkage
descriptor. The problem is not with the
calling program; this error usually
indicates a corrupted EPF file.

Error Codes From EPF$INIT; Error codes that nay be returned by
EPF$INIT are:

Keyword Value

<ok> 0

E$BPAR 6

E$BKEY 28

E$BffiRG

E$BVER

71

158

E$EPFT 217

E$ILTD 219

Meaning

The operation was successful.

The epf-id passed represents an EPF that is
no longer napped to memory.

Either the key argument is invalid (not
k$initall or lc$reinit), or the k$reinit key
is specified but the linkage areas for the
EPF have not yet been fully initialized (by
specifying the k$initall key in a call to
EPF$INIT).

The EPF$ALI£ has not yet been successfully
called to allocate linkage areas for this
EPF.

Invalid EPF version. The EPF is either a
corrupted EPF, not an EPF, or an EPF
generated by a future revision of PRIMDS
that is not supported by the current
revision of PRIM3S. Because this condition
is checked by EPF$MAP and EPF$ALLC, this
error is not likely to occur when calling
EPF$INIT unless it is called out of
sequence.

The EPF is not a valid EPF. Either the
file contains a corrupted EPF or is not an
EPF at all, or the file contains an EPF
generated by a revision of PRIM3S beyond
Rev. 19.4 that is not recognized by
Rev. 19.4 PRIM3S. Because this condition
is checked by EPF$MAP and EPF$ALLC, this
error is not likely to occur when calling
EPF$INIT unless it is called out of
sequence.

The EPF contains an invalid linkage
descriptor. The problem is not with the

Preliminary Release 19-42 First Edition

Invoking Programs Prom Within Programs

calling program; this error usually
indicates a corrupted EPP file.

E$ILTE 220 The EPF contains an invalid linkage
descriptor. The problem is not with the
calling program; this error usually
indicates a corrupted EPP file.

Error Codes From EPF$INVK: Error codes that may be returned by
EPP$INVK including any codes that may be returned by EPF$EEL in
addition to those listed below.

Keyword Value Meaning

<ok> 0 The operation was successful.

E$BPAR 6 The epf-id passed represents an EPF that is
no longer mapped to memory.

E$BVER 158 Invalid EPF version. The EPF is either a
corrupted EPF, not an EPFf or an EPF
generated by a future revision of PRIMDS
that is not supported by the current
revision of PRIMDS. Because this condition
is checked by EPFMAP, EPFALLC, and
EPF$INIT, this error is not likely to occur
when calling EPF$INVK unless it is called
out of sequence.

E$EPFT 217 The EPP is not a valid EPF. Either the
file contains a corrupted EPP or is not an
EPF at all, or the file contains an EPF
generated by a revision of PRIMDS beyond
Rev. 19.4 that is not recognized by
Rev. 19.4 PRIMDS. Because this condition
is checked by EPFMAP, EPFALLC, and
EPF$INIT, this error is not likely to occur
when calling EPF$INVK unless it is called
out of sequence.

E$ECEB 221 The command environment breadth limit has
been reached; the currently running
program can call no more programs. Use the
LIST_JJIMITS command to display command
environment limits, or use the CE$BRD
subroutine to determine the command
environment breadth limit from within a
program.

First Edition 19-43 Preliminary Release

Advanced Programmer's Guide

Error Codes From EPF$DEL: Error codes that may be returned by EPF$DEL
are:

6

Keyword Value

<ok> 0

E$BPAR 6

E$BVER 158

E$EPFT 217

E$SWPR 225

Meaning

The operation was successful.

Tfte epf-id passed represents an EPF that is
no longer mapped to memory.

Invalid EPF version. The EPF is either a
corrupted EPF, not an EPF, or an EPF
generated by a future revision of PRIMDS
that is not supported by the current
revision of PRIMDS. Because this condition
is checked ty EPFMAP, EPFALLC, EPF$INIT,
and EPF$INVK, this error is not likely to
occur when calling EPF$EEL unless it is
called out of sequence.

The EPF is not a valid EPF. Either the
file contains a corrupted EPF or is not an
EPF at all, or the file contains an EPF
generated by a revision of PRIMDS beyond
Rev. 19.4 that is not recognized by
Rev. 19.4 PRIMDS. Because this condition
is checked by EPFMAP, EPFALLC, EPF$INIT,
and EPF$INVK, this error is not likely to
occur when calling EPF$DEL unless it is
called out of sequence.

The EPF is suspended by this user
(process), and hence cannot be unmapped
from memory. This error code is returned
if a program attempts to call EPF$DEL to
unmap itself.

THE FRE$RA SUBROUTINE

After calling CP$, EPF$RUN, or EPF$INVK to invoke a function and after
making use of the returned function value, your program must call
FRE$RA to free the memory used to hold the returned function value.
(Call FRE$RA only if the function your program invoked actually
returned a function value.)

Figure 19-9 illustrates the calling sequence of
the returned function pointer (rtn-fcn-ptr).

FRE$RA. Simply pass

For information on how returned function values are set, see Chapter
18, including the descriptions of the ALS$RA and ALC$RA subroutines.

Preliminary Release 19-44 First Edition

Invoking Programs From Within Programs

\ Pnto * Cei^rixei f«AcfciaA V*(ge Structure,

fcWAed

FUACUCA

1
PTft.

v l
Ffc£* R.A C rbvfcn-f>tr)

Calling Sequence of FRE$RA
Figure 19-9

First Edition 19-45 Preliminary Release

Advanced Programmer's Guide

SAMPLE PROGRAMS

The f i r s t sample program i s c a l l e d SLOWJQWOKE. I t takes an EPF name
and command arguments for the EPF a s arguments t o t h e program, and i t
then performs each s t e p a s s o c i a t e d with execut ing the t a r g e t EPF.
After each s t e p , i t pauses so t h a t the user may use the LIST_EPF
HDETAIL command t o s e e how far i t has g o t t e n . Although not n e c e s s a r i l y
a useful example by itself , this program does i l lustrate how each step
i s performed, and also shows the PLl/G declarations for the appropriate
subroutines and structures.

slow_invoke: proc (x_commancLJLine rcode, commandLstate, commancLflags,
return_jEunction_ptr);

del x_commanaLJLine char (1024) var, /
code fixed bin (15), \
1 commanoLstate,

2 com_name char(32) var,
2 version fixed bin (15),
2 vcb_ptr ptr,
2 cp_iter_info,

3 mocl_after_date fixed bin(31),
3 mocl_before_date fixed bin (31),
3 blt_after_date fixed bin (31),
3 bK_before_date fixed bin (31), /
3 type_dir b i t (l) , {**%
3 type_segdir bit (1), '
3 type_j£ile b i t (l) ,
3 type_acat b i t (l) ,
3 type_rbf b i t (l) ,
3 mbzl bit (11),
3 verify_sw bit(1),
3 botup_sw b i t (l) ,
3 mbz2 bit(14),
3 walkJfrom fixed bin (15), (
3 walk^to fixed bin (15), V
3 in_j.teration b i t (l) ,
3 in_wildcard b i t (l) ,
3 irL.treewalk b i t (l) ,
3 mbz3 bit(13),

1 commancLflags,
2 oommancU:unction_call b i t (l) ,
2 mbz bit(15),

returnufunctionlptr ptr;

%include ,SYSGOM>ERRD.INS.PLl,;
%include ,SYSGOM>KEYS.INS.PLl,;

del epfjunit fixed bin (15),
epf_id fixed bin (31), ,
epfJEilename char(128) var, v
i fixed bin (15),
commancULine char (1024) var,

Preliminary Release 19-46 First Edition

http://irL.tr

Invoking Programs Prom Within Programs

r epf_oommancLline char(1024) var,
basename char (32) varr
suffix_jused fixed bin (15),
type fixed bin (15),
commancLsfcatus fixed bin (15);

del errpr$ entry(fixed bin(15),fixed bin(15),char(80),
fixed bin(15),char(80),fixed bin(15)),

srsfx$ entry(fixed bin(15),char(128) var,fixed bin(15),
fixed bin(15) rfixed bin(15),char(32) var,char(32) var,
fixed bin(15),fixed bin(15)),

clo$fu entry(fixed bin(15),fixed bin(15)),
tnou entry(ciicir (80),fixed bin (15)),
epf$map entry(fixed bin(15),fixed bin(15),fixed bin(15),

fixed bin (15)) returns (fixed bin(31)),
epf $allc entry(fixed bin(31),fixed bin(15)),
epf$init entry(fixed bin(15),fixed bin(31) ,fixed bin(15)),
epf$invk entry (fixed bin (31),fixed bin (15),char (1024) var,

fixed bin (15),
1, 2 char(32) var,

2 fixed bin (15),
2 ptr,
2, 3 fixed bin (31),

3 fixed bin (31),
3 fixed bin (31),
3 fixed bin (31),
3 b i t (l) ,
3 b i t (l) ,
3 b i t (l) ,
3 b i t (l) ,
3 b i t (l) ,
3 bit (11),
3 b i t (l) ,
3 b i t (l) ,
3 bit (14),
3 fixed bin(15),
3 fixed bin (15),
3 b i t (l) ,
3 b i t (l) ,
3 b i t (l) ,
3 bit (13),

1, 2 b i t (l) ,
2 bit (15),

Ptr),
epf$del entry (fixed bin (31), fixed bin(15));

ocannancLline=tr im(x_cammancLJLine,' 11 • b);
i=index (commandLline,' ') ;

i f i=0 & cc^^^BncLline=,'
then do;

code=e$ivcm;
call e r r p ^ ^ i r t ^ c o a e , 1 Specify EPF filename',20,

,SL0W_JNVOKE,,ll);

First Edition 19-47 Preliminary Release

/ ^ N

Advanced Programmer's Guide
(

return;
end;

if i=0
then do;

epf_f ilename=commancl_line;
epf_commancU.ine=l';
end;

else do;
epf_£ilename=substr (commancLline, 1, i -1);
epf_coiraiBncl_line=trim(substr (commancULine, i+1), "11f b);
end;

call sr sf x$ (k$getu+k$vmr,epf_Jlilename, epf_unit, type, 1 , ' .KIN',
basename,suf fix_used,code);

if code*=0 /
then do; \

call errpr $(k$irtn,code, (epffilename),
length (epf JEilename), 'SLOWLINVOKE', 11) ;

return;
end;

call tnou('SRSFX$ complete',15);
call pause_me;

epf_id=epf$map(k$anyfepf_unitfk$rx,code); /
call clo$fu(epf_unit,i); ^
if code~=0

then do;
call errpr$(k$irtn,code, 'Mapping ' I |epf_jEilenamef

length (epf_f ilename) +8, 'SL0W_JNVOKE' ,11);
return;
end;

call tnou('EPF$MM> complete* ,16);
call pause_jne; /

call epf $allc(epf_id, code);
if code^O

then do;
call clo$fu(epf_unit,i);
call errpr$(k$irtn,code,'Allocating • I |epf_filename,

length (epf_f ilename) +11, 'SLCWLJNVOKE' ,11) ;
return;
end;

cal l tnou('EPP$ALLC complete' ,17);
call pause_jne;

call epf$irrit(k$initall,epf_JLd,code);
i f code~=0

then do; I
call clo$fu(epf_unit,i);
call errpr $ (k$irtn, code,' Initializing • 11 epf_̂ f ilename,

Preliminary Release 19-48 First Edition

Invoking Programs From Within Programs

length (epf JEilename) +13, 'SLOWLJENVOKE',11) ;
return;
end;

call tnou('EPF$INIT complete1,17);
call pause_jne;

comnandL3tatus=0;
commandL t̂ate. com_name=basename;
cal 1 epf $invk (epf_id, code, epf_comnancULine, commandLsta tus,

commandLstate, commancLflags, return_JEunction_pt r);
i f code*=0

then do;
call clo$fu(epf_unit,i);
call errpr$(k$irtn,code, 'Invoking f I I epf_f ilename,

length (epf_filename) +10, ,SDCW_JNVOKE, ,11) ;
return;
end;

call tnou ('EPF$INVK complete1,17);
cal l pause_me;

call epf$del(epf_id,code);
i f codeA=0

then do;
call clo$f u(epf__unit,i); r call errpr$(k$irtn,code, 'Removing ' 11 epf JEilename,

length (epf_f ilename) +9, •SLCWLINVOKE1,11) ;
return;
end;

call tnou(*EPF$DEL complete',16);
call pause_me;

code=commandLstatus;
return;

pause_me: proc;

del pause... char(32) var static init(,EAUSE$');

del signl$ entry (char (32) var,ptr options (short),fixed bin (15),
ptr options (short),fixed bin (15) ,bit(l) aligned);

call signl$(pause_,null() ,0,null() ,0,'1'b);

end; / * pausejne: proc */

end;

First Edition 19-49 Preliminary Release

Advanced Programmer's Guide
(

The next sample program, called mSPLAY__EPF_INFO, displays command (^
processing information for an EPF by mapping i t to memory, calling)
EPF$CPF, and then removing the EPF from memory. It illustrates how to
process the information returned by EPF$CPF.

display_epf_info: proc (commancLJLine, code, csmmancLstate,
commancVjElags, return_j£unctioniptr);

del commancLJLine char(1024) var,
code fixed bin (15),
1 commancLstate,

2 con_name char (32) var,
2 version fixed bin (15),

1 commandJrlags,
2 commancL£unction_call b i t (l) , /
2 mte bit (15), {

return_function_ptr ptr;
%includa ISYSa^M>ERPD.INS.PLl,;
%include ,SYS<DM>KEYS.INS.PL1,;

del epf_unit fixed bin (15),
epf_id fixed bin (31),
epfJEilename char(128) var,
i fixed bin (15), /
basename char (32) var, \^^
suffix__used fixed bin (15), •
type fixed bin(15);

del errpr$ entry (fixed bin (15),fixed bin (15) ,char(80),
fixed bin(15),char(80),fixed bin(15)),

srsfx$ entry (fixed bin (15), char (128) var, fixed bin (15),
fixed bin(15),fixed bin(15),char(32) var,char(32) var,
fixed bin(15),fixed bin(15)),

clo$f u entry (fixed bin (15),fixed bin (15)), /
tnou entry(char(80),fixed bin (15)), \
epf $map entry (fixed bin (15), fixed bin (15), fixed bin (15),

fixed bin(15)) returns (fixed bin(31)),
epf$del entry(fixed bin(31),fixed bin(15));

i f oomnancU.ine-1'
then do;

code=e$ivcm;
call errpr$(k$irtn,code,1 Specify EPF filename',20,

(com_name), length (com_name));
return;
end;

epfJEUename=comnancLline;

call srsfx$ (k$getu+k$vmr ,epf_filename, epf_unit,type , 1 , • .FUN', (/ ^
basename,suffix_used,code); 1

i f code^O
(

Preliminary Release 19-50 First Edition

Invoking Programs From Within Programs

.—̂ then do;
r" call errpr$(k$irtn,code,(epf_filename),

length (epffilename), (com_name),length (com_name));
return;
end;

ep£_i*=epf $map(k$anyfepfjunit, k$rx,code);
call clo$fu(epf_unit,i); /* Close the unit. */
if oodeA=0

then do;
call errpr$(k$irtnfcode,'Mapping ' I |epf_filename,

length(epffilename) +8, (com_name),length(com_name));
return;
end;

call sayjiKtrimtchartepf^idJ/ll'b));

call show_epf__info (epf_id); / * Display the information. */

call epf$del(epf_j.d,code);
i f code"=0 & code~=e$swpr

then do;
call clo$f u (epfjunit, i) ;
call errpr$(k$irtnrcodef 'Removing ' I |epf_filename,

length (epf_f ilename) +9, (com_name),length (conuiame));
return;
end;

else i f code=e$swpr
then call sayjil (• (Sti l l suspended by this process.) *);

code=0;
return;

show__epf_info: proc (epf_id);

del epf_id fitted bin (31);

del code fixed bin(15),
1 epf_info, / * EPP info data structure */

2 a>mmancLflags,
3 wildcards b i t (l) ,
3 treewalks b i t (l) ,
3 iteration bit (1),
3 verify b i t (l) ,
3 file_typesf

4 f i l e b i t (l) ,
4 directory b i t (l) ,
4 segdir bit(1) ,
4 acat b i t (l) ,
4 rbf b i t (l) f
4 reserved bit (7),

2 name_generation_position fixed bin (15);

del epf$cpf entry(fixed bin(31),

First Edition 19-51 Preliminary Release

Advanced Programmer's Guide

1 , 2 , 3 b i t (l) ,
3 b i t (l) ,
3 b i t (l) ,
3 b i t (l) ,
3 ,

4 b i t (l) ,
4 b i t (l) ,
4 b i t (l) ,
4 b i t (l) f
4 b i t (l) ,
4 b i t (7) ,

2 fixed bin(15) ,
fixed bin (15));

/ * Cal l EPF$CPF t o get the information. */

c a l l epf$cpf (epf_id,epf_info,code);
i f code"=0 then c a l l e r rpr$(k$i r tn ,code , ' Call ing EPP$CPF',15,

(conuname),length (com_name));
e l se do;

/ * Command processing info . */

c a l l s a y _ n l (") ;
c a l l say_nl(' Info on ' 11epf j i i lenameII 1 : ') ;
c a l l say_jil (") ;

c a l l say('Command p roces s ing : ') ;

i f epf_info.wildcards then c a l l s a y (' w i l d ') ;
i f epf_info.treewalks then c a l l s a y (' t r e e ') ;
i f epf_ info . i te ra t ion then c a l l sayC i t e r ') ;
i f epf_info.verify then c a l l sayC v f y ') ;

c a l l s a y _ n l (") ;
c a l l say('Object s e l e c t i o n : ') ; /

i f epf_info . f i le then c a l l say(' f i l e ') ;
i f epf_info.directory then c a l l sayC d i r 1) ;
i f epf_info.segdir then c a l l sayC s e g d i r ') ;
i f epf__info.acat then c a l l say(' a c a t ') ;
i f epf_Jjifo.rbf then c a l l sayC r b f 1) ;

c a l l s a y _ n l (") ;
c a l l sayjili 'Name generation pos i t ion : '

I |trim(char(name_generation_position) , ' 1 1 ' b)) ;

c a l l s a y _ n l (") ;

end;

end; / * show_epf__info: proc */ (

say: proc (t ex t) ;

Preliminary Release 19-52 F i r s t Edi t ion

Invoking Programs Prom Within Programs

del text char(*) var?

del tnoua entry (char (*), fixed bin(15));

call tnoua((text),length (text));

end; /* say: proc */

say_nl: proc (text);

del text char(*) var?

del tnou entry (char (*), fixed bin(15))?

call tnou ((text),length (text)) ?

end? /* say: proc */

end;

IF A PROGRAM INVOKES ITSELF

A program may invoke itself recursively, either directly by calling
itself using CP$, EPF$RUN, or EPF$INVK, or indirectly by calling
another program or collection of programs that ultimately call the
original program.

A program invoking itself recursively via CP$, EPF$RUN, or EPF$INVK,
whether directly or indirectly, does not necessarily produce the same
results as if it calls itself by invoking its own main entrypoint. In
both cases, dynamic storage is allocated and initialized for each
invocation. However, static storage is allocated only during program
invocation? it is allocated for all procedures in that program each
time the program is invoked. Once the program is running, no
additional static storage is allocated by PRINDS.

PRIM3S allocates and initializes one copy of static storage per program
invocation. Static storage includes COMMON and STATIC EXTERNAL areas
except for those explicitly named using the STMBCL subcommand of BIND.
In addition, static storage contains subroutine linkage pointers,
static data (SAVE or EATA in FORTRAN, STATIC in PL/1) r and program
constants.

Because PRIMDS separates program invocations so that they cannot
destroy one another's data, one program can be invoked and then
suspended, reinvoked, then the original invocation can be continued by
issuing the START command. The second invocation of the program does
not affect the first invocation of the program? therefore, the results
of the first invocation are essentially unchanged.

First Edition 19-53 Preliminary Release

Advanced Programmer's Guide

Of course, if a program makes use of data that is not in static or (/*^
dynamic storage, such as (DMMDN or STATIC EXTERNAL storage specified ^ ^
using the S1MB0L command, then separate invocations of the program are
not necessarily independent of each other. Other data not in static or
dynamic storage includes system objects such as attach points, files,
file units, and so on. PRIMDS does not provide a fully recursive
command environment, it provides only a separation of per-program data
between program invocations. See Chapter 21 for more information on
this subject.

TERMINAL INPUT fiND OUTPUT

Keep in mind that invoking a command from within a program does not
redirect terminal input or output. For example, if you invoke the LD
command from within a program, the output from LD is sent to the user
terminal, and responses to the —More— prompt are solicited from the
user terminal.

Therefore, you may wish to use the COMO$$ subroutine or the internal
PRIMDS command COMOUTPUT to redirect terminal output to a command
output file. To redirect terminal input to a command input file
written by your program, you may use COMI$$ or the internal PRIMDS
command COMINPUT; alternatively, when supported by the command, you
may specify an option indicating how to substitute for terminal input.
(For example, LD accepts a -NO_jflAlT option, which specifies that
— M o r e — prompts are not to be issued.)

Most functions are designed and written to not perform any terminal
I/O, or to allow the invoking program to disable or redirect terminal
I/O by specifying command line options.

Preliminary Release 19-54 First Edition

/^v

CHAPTER 20

The Command Processor Stack

To be supplied in the First Edition.

/^*

First Edition 20-1 Preliminary Release

CHAPTER 21

The Recursive Command Environment

To be supplied in the First Edition.

/S^^s

First Edition 21-1 Preliminary Release

APPENDIX A

New Features for the Advanced Programmer

To be supplied in the First Edition.

First Edition A-l Preliminary Release

APPENDIX B

Error Codes and Messages

Listed in this Appendix are the standard PRIMOS f i l e system error
codes. The description of each error code i s in the form:

• E$xxxx (nn) error-message

description-of-error

The mnemonic for the error code i s E$xxxx; the value of the mnemonic
i s nn; the error message displayed fcy ERRPR$ for that error code i s
error-message; and description-of-error i s the description of the
error code.

Mnemonics for error codes are defined by f i les in SYSCOM for several
languages:

Language File Name in SYSODM

FTN ERRD.INS.FIN
Pascal ERRD. INS.PASCAL
PL/l-G ERRD.INS.PLl

PMA ERRD.INS.PMA

You u s e t h e a p p r o p r i a t e %INCLDEE (P a s c a l and P L A - G) o r $INSERT (PIN
and PMA) in your program to provide definitions of a l l the standard
error codes for your program.

First Edition B-l Preliminary Release

Advanced Programmer's Guide

The Subroutines Reference Guide contains more information on these four
files.

STflNEftRD FILE SYSTEM ERROR OOEES

• E$EOP (1) End of file.

Description to be supplied.

• E$BOP (2) Beginning of file.

Description to be supplied.

• E$UNDP (3) Unit not open.

The file unit is closed, or is not open for the type of operation being
requested. For example, an attempt to read from a file that is open
only for writing causes this error, as does an attempt to write to a
file that is open only for reading.

This error code is also returned if an attempt is made to truncate a
file that is not open for writing.

• E$UIUS (4) Unit in use.

Description to be supplied.

• E$FIUS (5) File in use.

The file system object being accessed is already open on another file
unit, or by another user. This error occurs if an attempt is made to:

• Open an object that is already open by another user or by the
same user on another file unit, and the read/write lock of the
object disallows the attempt

• Rename an object that is open by another user or by the same
user on another file unit

• Rename a file directory that is in use as an attach point by any
user

• Set a quota on a nonquota directory that is in use or contains

Preliminary Release B-2 First Edition

Error Codes and Messages

other f i l es or directories that are in use

• Change the open mode of a f i l e unit, by calling CH$MDD or SRCH$$
(with the K$CACC key), when the object i s open by another user
or by the same user on another f i l e unit and the new open mode
conflicts with the other open mode

• Truncate a f i l e or segment directory that i s open ty another
user or by the same user on another f i l e unit

If your program i s accessing a f i l e that may occasionally be in use,
consider having your program retry the aborted operation several times,
sleeping for a second or so in between each operation. For example:

code=e$fius; / * Assume error. */
do i=l to 60 while(code'=e$fius); / * Up to 60 seconds wait. */

call cnam$$(oldnam,oldlen,newnam,newlen,code);
i f code=e$fius then call sleep$(1000); / * Sleep a sec. */
end;

If you need to be able to read a file while it is being written, you
can change the read/write lock of the file by using the RWIOCK command
or the SATR$$ subroutine. The read/write lock is normally SYS, causing
the system default to be used. (The system default is typically EXCL
for "exclusive", meaning "n readers or 1 writer", as described above.)
Changing the read/write lock of a file to UPDT (for "update") allows n
readers and 1 writer to access the file simultaneously. Changing the
read/write lock to NONE (no lock) allows n readers and m writers to
access the file simultaneously.

See Chapter 12 for more information on the read/write lock.

• E$BPAR (6) Bad parameter.

Description to be supplied.

• E$NATT (7) No UFD attached.

Usually occurs only when the directory to which the user is attached is
removed from the system, as when a disk is shut down. Use one of the
AT$xxx subroutines, or the ATTACH or ORIGIN command, to re-establish a
cache attach point.

• E$FDFL (8) Directory too large.

Description to be supplied.

First Edition B-3 Preliminary Release

Advanced Programmer's Guide

• E$DKEL (9) The disk is full.

The operation requires an additional record to be allocated on a disk
partition, but all records on that partition are already allocated.
Use the AVAIL command to display the number of total and available
records on a disk partition.

Some operations are nonreooverable after returning this error code.
For example, the WTLIN$ subroutine does not restore the file location
pointer to the original location when it encounters this error ? the
file location is undefined. Other operations, such as the PIWF$$
subroutine, reset the file location pointer to the value it held before
the disk-full error was encountered.

When designing programs that manipulate data bases, make sure you
design them to handle disk-full and quota-exceeded conditions
correctly, by performing appropriate cleanup before actually returning
the error code to the calling program or to the user.

• E$NRIT (10) Insufficient access rights.

Description to be supplied.

• E$FDEL (11) File open on delete.

An attempt to delete a file directory or a segment directory failed
because the directory was in use by another user or by the same user on
another file unit.

• E$NTUD (12) Not a UFD.

The attempted operation requires the target file system object to be a
file directory, but it is not a file directory. This error is returned
by the following operations:

• Attach

• Set quota (Q$SET)

• Check for acl vs. non-acl (ISACL$)

• Read directory entry (DIRRD, ENTRD, RDEN$$)

_/^^\

Preliminary Release B-4 First Edition

• ESNTSD (13)

Error Codes and Messages

Not a segment directory.

The attempted operation requires the target file system object to be a
segment directory, but it is not a segment directory.

• E$DIRE (14) Operation illegal on directory.

The file being truncated is a segment directory. Segment directories
can be truncated using only SGDR$$.

• E$FNTF (15)

Description to be supplied.

Not found.

• E$FNTS (16)

Description to be supplied.

Not found in segment directory.

• E$BNAM (17)

Description to be supplied.

Illegal name.

• E$EXST (18)

Description to be supplied.

Already exists,

• E$DNTE (19)

Description to be supplied.

The directory is not empty.

• E$SHOT (20)

Description to be supplied.

Bad shutdown attempted.

• E$DISK (21)

Description to be supplied.

First Edition B-5

Disk I/O error.

Preliminary Release

Advanced Programmer's Guide

• E$BDAM (22)

Description to be supplied.

Bad DAN f i l e .

C

• E$PTPM (23)

Description to be supplied.

Pointer mismatch found.

• E$BEAS (24)

Description to be supplied.

Bad password.

• E$BGOD (25)

Description to be supplied.

Bad code in error vector.

• E$BTRN (26)

Description to be supplied.

Bad truncate of segment directory.

• E$OLDP (27)

Description to be supplied.

Old partitions not supported.

• E$BKEY (28)

Description to be supplied.

Bad key in call.

E$BUNT (29) Bad unit number.

The file unit number supplied is not a valid file unit number. Note
that file units 1-128 are always valid unit numbers (unless the System
Administrator has drastically reduced the number of valid file units by
using the FILUNT directive in the system configuration file). Larger
file units may beoome valid as a user uses more dynamically allocated
units. Pile unit numbers less than 1 are invalid in most cases.

Preliminary Pelease B-€ First Edition

• ESNULL (37)

Description to be supplied.

Error Codes and Messages

• E$BSUN (30)

Description to be supplied.

Bad segment directory unit*

• E$SUND (31)

Description to be supplied.

Segment directory unit not open.

• E$NMLG (32)

Description to be supplied.

Name is too long.

• E$SDER (33)

Description to be supplied.

Segment directory error.

• E$BUPD (34)

Description to be supplied.

The directory is damaged.

• E$BPES (35)

Description to be supplied.

Buffer too small.

^ E$FITB (36)

Description to be supplied.

The file is too long.

• E$IREM (38)

Description to be supplied.

Illegal remote reference.

First Edition B-7 Preliminary Release

Advanced Programmer's Guide

• E$DVTU (39)

Description to be supplied.

The device is in use, v>"*%

E$KLDN (40) The remote line is cbwn.

The system on which the file resides cannot be reached from the local
system. Therefore, no disks on that remote system can be accessed.

E$F0IU (41) All file units in use.

No more file units are available for the calling process. This usually
indicates that the program is not closing units it has finished using,
since the number of available file units is usually very large.

This error may also indicate that a remote system being used by the
calling process has run out of file units on which to handle this
process's remote requests.

• E$DNS (42)

Description to be supplied.

Device is not started.

• E$TMUL (43)

Description to be supplied.

Too many subdirectory levels.

• E$FBST (44)

Description to be supplied.

FAM - bad startup.

• E$BSGN (45)

Description to be supplied.

Invalid segment number.

• E$ETPC (46)

Description to be supplied.

Invalid FAM function code.

Preliminary Release B-8 First Edition

Error Codes and Messages

• E$imj (47)

Description to be supplied.

Maximum remote users exceeded.

• E$NASS (48)

Description to be supplied.

Device not assigned.

• E$BESV (49)

Description to be supplied.

Bad EftM SVC.

• E$SEM3 (50)

Description to be supplied.

Semaphore overflow.

• E$NTIM (51)

Description to be supplied.

• E$FABT (52)

Description to be supplied.

No timer.

FAM - aborted.

• E$F0NC (53)

Description to be supplied.

FAM - operation not complete.

• E$NPHA (54)

Description to be supplied.

No phantoms are available.

• E$ROCM (55)

Description to be supplied.

No room.

First Edition B-9 Preliminary Release

Advanced Programmer's Guide

• E$WTPR (56) Disk i s write-protected.

On a write-protected disk, a f i l e can neither be opened for writing nor
be created. (A disk i s write-protected by using the ADEESK command,
described in the System Operator's Guide, Volume II.)

• E$ITRE (57) Illegal treename.

This indicates that the pathname supplied to TSRC$$ does not conform to
the syntax rules for a pathname. See the Prime User's Guide for a
description of the syntax of a pathname.

(

• E$FAMU (58)

Description to be supplied.

FAM - already in use.

• E$TMUS (59)

Description to be supplied.

Max number of users exceeded.

• E$NGDM (60)

Description to be supplied.

Null command line.

• E$NPLT (61)

Description to be supplied.

Unable to find fault frame.

• E$STKF (62)

Description to be supplied.

Bad stack format.

• E$STKS (63)

Description to be supplied.

Bad stack format signalling.

• E$NOGN (64) No on-unit found.

Preliminary Release B-10 First Edition

Error Codes and Messages

Description to be supplied.

• E$CRWL (65)

Description to be supplied.

Fatal error in crawlout.

• E$CRCV (66)

Description to be supplied.

Stack overflow in crawlout.

• E$CRUN (67)

Description to be supplied.

Crawlout unwind failed.

• E$CMND (68)

Description to be supplied.

• E$RCHR (69)

Description to be supplied.

Bad command format.

Reserved character.

• E$NEXP (70)

Description to be supplied.

Bad use of EXIT.

• E$BARG (71)

Description to be supplied.

Invalid argument to command.

• E$CS07 (72)

Description to be supplied.

Concealed stack overflow.

• E$N0SG (73) Segment does not exist.

First Edition B-ll Preliminary Release

Advanced Progranmer's Guide

Description to be supplied.

(

• ESERCL (74)

Description to be supplied.

Command line truncated.

• E$NEMC (75)

Description to be supplied.

No SMLC DMC channels.

• E$DNAV (76)

Description to be supplied.

Device not available.

• E$DATT (77)

Description to be supplied.

Device already attached.

• E$BDAT (78)

Description to be supplied.

Bad output data,

• E$BLEN (79)

Description to be supplied.

Bad length.

• E$BDEV (80)

Description to be supplied.

Bad device number.

• E$QLEX (81)

Description to be supplied.

Queue length exceeded.

• E$NBUF (82) No buffer space.

Preliminary Release B-12 First Edition

Error Codes and Messages

Description to be supplied.

• E$INWT (83)

Description to be supplied.

Input waiting.

• E$NINF (84)

Description to be supplied.

No input available.

• E$DFD (85)

Description to be supplied.

Device forcibly detached.

• E$DNC (86)

Description to be supplied.

• E$SICM (87)

Description to be supplied.

DPTX not configured.

Illegal 3270 command.

• E$SBCP (88)

Description to be supplied.

Bad copy FROM device number.

• E$VKBL (89)

Description to be supplied.

Keyboard locked.

• E$VIA (90)

Description to be supplied.

Invalid AID byte.

• E$VICA (91) Invalid cursor address.

First Edition B-13 Preliminary Release

Advanced Programmer's Guide

Description to be supplied.

• E$VTF (92)

Description to be supplied.

Invalid field address.

• E$VFR (93)

Description to be supplied.

Field required.

• E$VFP (94)

Description to be supplied.

Field prohibited.

• E$VPPC (95)

Description to be supplied.

Protected field check.

• E$VNPC (96)

Description to be supplied.

Numeric field check.

• E$VPEF (97)

Description to be supplied.

Past end of field.

• E$VIRC (98)

Description to be supplied.

Invalid read mod character.

• E$IVCM (99)

Description to be supplied.

Invalid command.

• E$DNCT (100) Device not connected.

Preliminary Release B-14 First Edition

Error Codes and Messages

Description to be supplied.

• E$BNtfD (101)

Description to be supplied.

Bad number of words.

• E$SGIU (102)

Description to be supplied.

Segment in use.

• E$NESG (103)

Description to be supplied.

Not enough segments.

• E$SDUP (104)

Description to be supplied.

• E$IVWN (105)

Description to be supplied.

Duplicate segment number.

Invalid VMPA window number.

• E$WAIN (106)

Description to be supplied.

Window already in address space.

• E$NMVS (107)

Description to be supplied.

No more VMEA segments,

• E$NMES (108)

Description to be supplied.

No more temp segments.

• E$N£AH (109) Not a DAN file.

First Edition B-15 Preliminary Release

Advanced Programmers Guide

Description to be supplied.

• E$NOVA (110)

Description to be supplied.

Not open for VMFA.

• E$NBCS (111)

Description to be supplied.

Not enough contiguous segments.

• E$NRCV (112)

Description to be supplied.

Requires receive enabled.

• E$UNRV (113)

Description to be supplied.

User not receiving now.

• E$UBSY (114)

Description to be supplied.

User busy, please wait.

• E$UDEF (115)

Description to be supplied.

User unable to receive messages.

• E$UADR (116)

Description to be supplied.

Unknown addressee.

• E$PKTL (117)

Description to be supplied.

Operation partially blocked.

• E$NSUC (118) Operation unsuccessful.

Preliminary Release B-16 First Edition

Error Codes and Messages

Description to be supplied.

• E$NROB (119)

Description to be supplied.

No room in output buffer.

E$NETE (120) Network error detected.

This indicates that a problem with a remote file access has occurred.
It is possible that trying the operation again might be successful. If
not, it may be necessary for the user to close all remote file units on
the remote system and to issue the ORIGIN command before retrying the
remote access.

E$SHDN (121) Disk has been shut down.

The disk on which the f i l e resides has been shut down (using the SHUTDN
command as described in the System Operator's Guide, Volume I I) . The
disk i s no longer available for use, until the system operator uses the
ADDISK command to add the disk again.

• E$UN0D (122)

Description to be supplied.

Unknown node (PRIMBNET).

• E$NEftT (123)

Description to be supplied.

ftb data found.

• E$ENQD (124)

Description to be supplied.

Enqueued only.

• E$PHNA. (125)

Description to be supplied.

• E$IWST (126)

First Edition

Protocol handler not available,

B-17

E$INWT enabled in conf ig.

Preliminary Release

Advanced Programmer's Guide
(

Description to be supplied.

¥ E$BKFP (127)

Description to be supplied.

Bad key for this protocol.

• B$BPRH (128)

Description to be supplied.

Bad PH specified in config.

• E$ABTI (129)

Description to be supplied.

I/O abort in progress.

• E$ILFF (130)

Description to be supplied.

Illegal DPTX file format.

• E$IMED (131)

Description to be supplied.

Too many emulate devices.

• E$DRNC (132)

Description to be supplied.

DPTX already configured. (

• E$NENB (133)

Description to be supplied.

Remote node not enabled.

• E$NSLA (134) No NPX slaves available.

The remote system on which the file resides has become overloaded with
remote file access requests. The operation may be attempted later,
with possible success.

Preliminary Release B-18 First Edition

Error Codes and Messages

• E$PNTF (135)

Description to be supplied.

Procedure not found.

E$SVAL (136) Slave validation error.

The user's remote ID for the system on which the file resides is
incorrect. The user must use the ADD_REMOTEL_ID command, described in
the PRIMPS Commands Reference Guide, to establish the correct remote ID
for the system. Until then, all attempts to access data on that remote
system will fail with this error code.

• E$IEDI (137)

Description to be supplied.

I/O error or device interrupt.

• E$WMST (138)

Description to be supplied.

• E$DNSK (139)

Description to be supplied.

Warm start occurred.

Pio instruction did not skip.

E$RSNU (140) Remote system not up.

The remote system on which the file resides is in the process of
starting up, but is not yet honoring remote file access requests. A
remote system honors remote file access requests once the operator
SETIME command has been issued at the supervisor terminal for that
system. See the System Operator's Guide, Volume II for details on the
SETIME command.

• E$S18E (141)

Description to be supplied.

• E$NPQB (142)

Description to be supplied.

No free quota blocks.

First Edition B-19 Preliminary Release

Advanced Programmer's Guide

• E$MXQB (143)

Description to be supplied.

Maximum quota exceeded.

(

• E$N0QD (144)

Description to be supplied.

Not a quota disk.

• E$QEXC (145)

Description to be supplied.

Quota set below current usage.

• E$IMFD (146)

Description to be supplied.

Operation illegal on MFD.

• E$NACL (147)

Description to be supplied.

Not an ACL directory.

• E$PNAC (148)

Description to be supplied.

Parent not an ACL directory.

• E$NTFD (149)

Description to be supplied.

Not a file or directory.

• E$IACL (150)

Description to be supplied.

Entry is an access category.

• E$NCAT (151)

Description to be supplied.

Preliminary Release B-20

Not an access category.

First Edition

Error Codes and Messages

• E$LRNA (152)

Description to be supplied.

Cannot access like reference.

• E$CPMF (153)

Description to be supplied.

Category protects MFD.

• E$ACBG (154)

Description to be supplied.

ACL too big,

• E$ACNF (155)

Description to be supplied.

• E$LRNF (156)

Description to be supplied.

Access category not found.

Like reference not found.

• E$BACL (157)

Description to be supplied.

Incorrect access control list format.

• E$BVER (158)

Description to be supplied.

Incorrect version number.

• E$NINF (159)

Description to be supplied.

No information.

• E$CATP (160) Directory still contains access categories.

Description to be supplied.

First Edition B-21 Preliminary Release

Advanced Programmer's Guide
(

• E$ADRF (161) Directory still contains ACL subdirectories,

Description to be supplied.

• E$NVAL (162)

Description to be supplied.

Validation error,

• E$LOGO (163)

Description to be supplied.

• E$NUTP (164)

Description to be supplied.

No unit table for phantom.

• E$UTAR (165)

Description to be supplied.

Unit table already returned.

• E$UNIU (166)

Description to be supplied.

Unit table not in use.

• E$NFUT (167)

Description to be supplied.

No unit table available.

• E$UAHU (168)

Description to be supplied.

User already has unit table.

• E$PANF (169)

Description to be supplied.

Preliminary Release B-22

Priority ACL not found.

First Edition

Error Codes and Messages

• E$MISA (170)

Description to be supplied.

Missing argument to command.

• E$SCCM (171)

Description to be supplied.

System console command only,

• E$BREA (172)

Description to be supplied.

Bad remote password.

• E$DTNS (173)

Description to be supplied.

Date and time not set.

• E$SHTO (174)

Description to be supplied.

Remote procedure cal l s t i l l pending.

• E$BCFG (175) Network config. mismatch or slave validation error

The remote system on which tiie f i l e resides does not agree with the
network configuration of tiie local system. See the System
Administrator's Guide, or your System Actaiinistrator, for assistance.

• E$BM0D (176)

Description to be supplied.

Illegal access mode.

• E$BID (177)

Description to be supplied.

Illegal identifier.

• E$STL9 (178) Disk format does not support this revision of IKEMDS.

First Edition B-23 Preliminary Release

Advanced Programmer's Guide

Description to be supplied.

(

• E$CTPR (179)

Description to be supplied.

Object is category-protected.

• E$DFPR (180)

Description to be supplied.

Object is default-protected.

• E$DLPR (181)

Description to be supplied.

Pile is delete-protected.

• E$BLUE (182)

Description to be supplied.

Bad EUBTL entry.

• E$NDFD (183)

Description to be supplied.

No driver for device.

• E$WBT (184)

Description to be supplied.

Wrong file type,

• E$FEMM (185)

Description to be supplied.

Format/data mismatch.

• E$FER (186)

Description to be supplied.

Bad format.

• E$BDV (187)

Preliminary Release B-24

Bad dope vector.

First Edition

Error Codes and Messages

i^"S
Description to be supplied.

• E$BFOV (188)

Description to be supplied.

F$IOBP overflow,

• E$NFAS (189) Top-level directory not found or inaccessible.

The first directory name supplied in the pathname could not be located
on any of the system disks.

• E$APND (190) Asynchronous procedure still pending.

Description to be supplied.

• E$BVCC (191)

Description to be supplied.

Bad virtual circuit clearing.

• E$RESF (192)

Description to be supplied.

Improper access of restricted file.

• E$MNPX (193)

Description to be supplied.

Illegal multiple hops in NIK

• E$SYNT (194)

Description to be supplied.

SYNTanx error

• E$USTR (195)

Description to be supplied.

Unterminated STRing

First Edition B-25 Preliminary Release

Advanced Programmer's Guide

• E$WNS (196)

Description to be supplied.

Wrong Number of Subscripts

• E$IREQ (197)

Description to be supplied.

Integer REQuired

• E$VN3 (198)

Description to be supplied.

Variable Not in namelist Group

• E$SOR (199)

Description to be supplied.

Subscript Out of Range

• E$TMW (200)

Description to be supplied.

Too Many Values for Variable

• E$ESV (201)

Description to be supplied.

Expected String Value

• E$VABS (202)

Description to be supplied.

Variable Array Bounds or Size

• E$BCLC (203)

Description to be supplied.

Bad Compiler Library Call

• E$NSB (204)

Description to be supplied.

NSB labelled tape was detected

Preliminary Release B-26 First Edition

Error Cooes and Messages

• E$WSLV (205)

Description to be supplied.

Slave ID mismatch.

• E$V0GC (206)

Description to be supplied.

Virtual circuit got cleared.

• E$MSLV (207)

Description to be supplied.

Exceeds the MAX number of slaves/user,

• E$IDNF (208)

Description to be supplied.

Slave ID number not found,

• E$NACC (209)

Description to be supplied.

Not accessible,

• E$UDMA (210)

Description to be supplied.

Not Enough DMA channels.

• E$UDMC (211)

Description to be supplied.

Not Enough DMC channels.

• E$BLEF (212)

Description to be supplied.

Bad tape record length and EOF.

• E$BLET (213)

Description to be supplied.

Bad tape record length and EOT.

First Edition B-27 Preliminary Release

Advanced Programmer's Guide

• E$ALSZ (214)

Description to be supplied.

ALLOCATE request too small.

(

• E$FRER (215)

Description to be supplied.

FREE request with invalid pointer.

• E$HPER (216)

Description to be supplied.

User storage heap is corrupted.

• E$EPPT (217)

Description to be supplied.

Invalid EPP type.

• E$EPFS (218)

Description to be supplied.

Invalid EPF search type,

• E$ILTD (219)

Description to be supplied.

Invalid EPP LTD linkage descriptor

• E$ILTE (220)

Description to be supplied.

Invalid EPP LTE linkage descriptor,

• E$ECEB (221)

Description to be supplied.

Exceeding command environment breadth.

• E$EPFL (222)

Description to be supplied.

EPF file exceeds file size limit.

Preliminary Release B-28 First Edition

Error Codes and Messages

• E$NTA (223)

Description to be supplied.

EPP file not active for this user.

• E$SWES (224) EPF file suspended within program session.

Description to be supplied.

• E$SWPR (225) EPF file suspended within this process.

Description to be supplied.

• E$ADGM (226)

Description to be supplied.

System Administrator command only,

• E$UAFU (227)

Description to be supplied.

Unable to allocate file unit

• E$FIDC (228)

Description to be supplied.

File inconsistent data count

• E$INDL (229)

Description to be supplied.

Insufficient Dam index levels

• E$PEOF (230)

Description to be supplied.

Past End Of File

First Edition B-29 Preliminary Release

	Chapter 18
	Program EPF Calling Sequence
	18-1
	18-2
	18-3
	18-4
	18-5
	18-6
	18-7
	18-8
	18-9
	18-10
	18-11
	18-12
	18-13
	18-14
	18-15
	18-16
	18-17
	18-18
	18-19
	18-20
	18-21
	18-22
	18-23
	18-24
	18-25
	18-26
	18-27
	18-28
	18-29
	Chaper 19
	Invoking Programs From Within Programs
	19-1
	19-2
	19-3
	19-4
	19-5
	19-6
	19-7
	19-8
	19-9
	19-10
	19-11
	19-12
	19-13
	19-14
	19-15
	19-16
	19-17
	19-18
	19-19
	19-20
	19-21
	19-22
	19-23
	19-24
	19-25
	19-26
	19-27
	19-28
	19-29
	19-30
	19-31
	19-32
	19-33
	19-34
	19-35
	19-36
	19-37
	19-38
	19-39
	19-40
	19-41
	19-42
	19-43
	19-44
	19-45
	19-46
	19-47
	19-48
	19-49
	19-50
	19-51
	19-52
	19-53
	19-54
	Chapter 20
	The Command Processor Stack
	20-1
	Chapter 21
	The Recursive Command Environment
	21-1
	Appendix A
	New Features for the Advanced Programmer
	A-1
	Appendix B
	Error Codes and Messages
	B-1
	B-2
	B-3
	B-4
	B-5
	B-6
	B-7
	B-8
	B-9
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	B-20
	B-21
	B-22
	B-23
	B-24
	B-25
	B-26
	B-27
	B-28
	B-29

