CHAPTER 18

Program EPF Calling Sequence

The main entrypoint of a program EPF is invoked by the command
enviromment with a standard calling sequence. ‘This calling sequence
consists of five arquments:

1. The command line supplied by the invoker

2. The command status set by the invoked program to indicate its
level of success to the invoker

3. Information on the command processing state supplied by the
invoker

4. A flag indicating whether the invoker desires a return value —
that is, whether the invoker is treating the invoked program as
a command function

5. A pointer set by the invoked program to point to the returned
value structure

The complete calling sequence is illustrated near the end of this
chapter; however, very few programs need to use all of the information
and arquments provided by the oommand enviromment. 1In fact, most
programs need accept only two or fewer arguments,

The invoker is the EPFSINVK subroutine, which is called either directly
by user programs, by the EPFSRUN subroutine, or by the CP$ subroutine.
EPFSRUN is, itself, called directly by user programs. CP$ is also
callable by user programs, and is called by PRIMIS to execute a
command.

First Edition 18-1 Preliminary Release

Advanced Programmer's Guide

TYPES OF CALLING SEQUENCES

There are five types of program EPF calling sequences, with various
levels of complexity. They are:

1. The program calling sequence, which takes no command 1line and
which returns no information

2, The command calling sequence, which accepts a command line and
which returns a severity code

3. The command function calling sequence, which accepts a command
line and which returns both a severity code and a pointer to
the returned function value

4, The detailed command calling sequence, which is an extended
form of the command calling sequence in that it also accepts
detailed command processing information

5. The complete calling sequence, which oombines the command
function calling sequence with the detailed command calling

sequence

The remainder of this chapter -describes each of the above calling
sequences.

Except for the program calling sequence, the EPFSINVK subroutine treats
all program EPFs the same in that it passes all five arguments to the
main subroutine of a program EPF., For the program calling sequence,
the EPFSINVK subroutine detects that the main subroutine of the program
EPF it will invoke accepts no arguments —— it does this by examining
the main subroutine's ECB — and it therefore invokes the main
subroutine with no arguments.

The only differences between the calling sequences is how many
arguments the main subroutine has been designed to accept. If it
accepts fewer than five argquments, then the extra arguments passed to
it are ignored by the main subroutine. (The PCL instruction, which
performs procedure cadlls on Prime systems, handles this situation
properly.) In fact, a main subroutine may accept five arguments but
choose to ignore some or all of them.

The *different calling sequences are therefore described only to
simplify the construction of a main program. You should decide what
kind of program you are writing by looking at:the descriptions of the
functionality each calling sequence provides throughout the rest of
this chapter, and then choose the calling sequence-that best suits your
program. »

Preliminary Release 18-2 First Edition

Program EPF Calling Sequence

PROGRAM CALLING SEQUENCE

The program calling sequence is the simplest calling sequence because
it accepts no arquments, Any command line passed to such a program is
ignored; no severity code is returned, so a severity code of 0 is
assumed by the invoker; if the program is invoked as a command
function, no pointer to the returned value is returned.

The calling sequence is not illustrated, because it consists of no
input or output arguments,

A program whose main subroutine accepts no arguments may use the SETRCS
subroutine, described in the Subroutines Reference Guide, to return a
severity code, even though it does not accept . the severity code
argument in its main subroutine. This feature is provided to allow the
oconversion to an EPF of an existing static-mode program that uses
SETRCS to be as easy as possible.

COMMAND CALLING SEQUENCE

The command calling sequence is used for programs that accept command
line arguments and options and that return a severity code.

Arquments in the Command Calling Sequence

The command calling sequence is the simplest calling sequence that
accepts arquments., It accepts two arguments:

1. The command line, an input-only arqument
2. The severity code, an output-only argument

If a program that accepts only these two arguments is invoked as a
command function, no pointer to the returned value is returned.

Figure 18-1 illustrates the command calling sequence, where EPF is the
main subroutine of the program EPF,

Command Line: The length of the command line can be a maximm of
32,766 characters. Your program may limit the length to any value it
chooses. Practical limits depend on the source of the oommand 1line,
For example, the 1limit on the length of a command line entered by an
interactive user or from a oommand input file is 160 characters;
whereas the 1limit on the length of a command line in a CPL program is
1024 characters,

If your program is passed a command line longer than it can handle, it
should use the error oode ESTRCL as both a severity code and as an
error code to ERRPR§ to indicate that the ocommand line has been

First Edition 18-3 Preliminary Release

Advanced Programmer's Guide

Command Cq“'ins SQqUQAc_e_

Command Line
Argvments

(3. YX 744

STRING e
(’ l N

EPF C Cemmu;\d'line/ severi-ky- code)
HALE
NT

‘ <ﬂ‘-‘ WQI‘QE‘\J

2: Ny £rror

>p: Errvr

Command Calling Sequence
Figure 18-1

Preliminary Release 18-4 First Edition

Program EPF Calling Sequence

truncated. If your program aborts due to this oondition, then a
truncated command line is an error; therefore, your program should
return ESTRCL, a positive value, as the severity code. If your program
ocontinues processing, but uses a truncated form of the command line,
your program should return -E$TRCL, a negative value, as the severity
code (unless a positive error code is required for other reasons) to
indicate a warning condition.

In PL1/G, you can use the LENGTH built-in function to check whether the
length of the command line is greater than your program supports, even
if you have declared the oommand line to be the maximum size your
program supports. In FORTRAN and other languages, you can compare the
first halfword of the command line argument, which is the actual length
of the command line, to the maximum length your program supports.,

If your program does not accept a null command line, it should use the
ESNOOM to indicate that it has been passed a null ocommand line. 1In
addition, you may wish to have your program display usage information
vhen passed a null command line; this is what many Prime-supplied
programs, such as SPOOL and JOB, d with a null command line. Even if
your program does display usage information, it should still return
ESNQOM, a positive value, as the severity code to indicate an error.

Other error codes your program may wish to return as either positive
values (to indicate errors) or as negative values (to indicate
warnings), and which your program may also wish to use when calling
ERRPRS$ to display warning messages, are:

Error Code Used For

ESBPAR Invalid numeric argquments, arguments where a
number was expected but some other argument was
supplied,

ESBNAM Invalid file system objectname arguments.

ESNMLG Overly long names, such as a file system
objectname that is more than 32 characters long.

ESITRE Invalid pathnames.

ESCMND Invalid command formats, such as use of an option

when no options are allowed, or use of command
line argquments when no command line arguments are

allowed.

ESBARG Invalid arquments, such as use of an unrecognized
option, or use of a name or number when an option
was expected.

ESTVOM " Invalid usage of a command, such as a combination

of options and arguments that is not permitted or
that does not make sense.

First Edition 18-5 Preliminary Release

Advanced Programmer's Guide

ESMISA Missing arquments, such as when a number, name,
or option that is required is not provided on the
command line,

All standard PRIMDS error oodes, including -those shown above, are
listed along with their numeric equivalents, messages, and
descriptions, in Appendix B.

Severity Code: Your program should set the severity code to an
appropriate value before returning from its main subroutine. As
indicated, the meaning of a severity code depends on whether it is
negativeé, zero, or positive. The magnitude of the severity code is not
defined by PRIMOS; however, your program should have documentation
that describes the different severity codes it may return and what they
mean, Typically, standard PRIMOS error codes, listed in Appendix B,
are used for severity codes; to indicate wamming oonditions, the
negated values of standard PRIMIS error codes are often used.

OOMMAND FUNCTION CALLING SEQUENCE

The command finction calling sequence is used when the program expects
to be invoked as a command function. It may or may not expect command
line arguments and options, and it may or may not return a severity
code. Such a program returns a pointer to a structure that oontains
the returned value, a text string, that can be substituted for the
invocation of the program as a command function on a command line.

The steps a command function performs are:
1. Accept five arguments in the main entrypoint calling sequence

2. Determine the string value to be returned to the calling
program

3. Allocate memory for the string value to be returned
4, Copy the string value into the allocated memory

5. Store the pointer to the allocated memory into the pointer
passed in the calling sequence of the main entrypoint

6. Return to the calling program

Step 1, accepting five arquments in the main entrypoint, is described
below- in the section entitled Arquments in the Command Function Calling
Sequence. Step 2, determining the value to be returned, depends on the
purpose of your program., Steps 3 and 4 are typically ocombined into one
step by calling the ALS$RA subroutine, described below in the section
entitled The ALSSRA Subroutine. Alternatively, they may be performed
separately by calling the ALCSRA subroutine, described below in the
section entitled The ALCSRA Subroutine, and then by copying the string

Preliminary Release 18-6 First Edition

(~

Program EPF Calling Sequence

value afterwards., Typically, only programs written in PL1/G and PMA
perform Steps 3 and 4 separately.

Step 5 is often performed implicitly during Step 3 if ALSSRA or ALCSRA
is passed the same variable accepted in the calling sequence of the
main entrypoint; otherwise, your command function must explicitly set
the rtn—fcn—E variable passed to it in the calling sequence of the
main entrypoint so that it points to the structure allocated by ALSSRA
or ALCSRA.

Step 6 1is performed in the same way as for other types of programs.
Your program should set the returned severity code to an appropriate
value before returning.

After the next three sections, a section entitled Sample Command
Functions presents two simple sample command functions.

Arqguments in the Command Function Calling Sequence

The main subroutine of a command function accepts five arguments:
1. The command line, an input-only argument
2. The severity code, an output-only argument

3. An input-only arqument that may be ignored by most oommand
functions

4, The invocation form bit, an input-only argument

5. The returned value pointer, an output-only argument
Figure 18-2 illustrates the command calling sequence, where EPF is the
main subroutine of the program EPF.

Command Line: See the section earlier in this chapter entitled COMMAND
CALLING SEQUENCE for information on the command line. That information
applies to command functions as well.

Severity Code: See the section earlier in this chapter entitled
(OMMAND CALLING SEQUENCE for information on the severity code. That
Information applies to command functions as well.

Ignored: The information passed to a program in the third argument may
é ignored by most ocommand functions. It is described in the next
section, entitled DETAILED QOMMAND CALLING SEQUENCE.

Invocation Form: The form of program invocation is a bit that

First Edition 18-7 Preliminary Release

Advanced Programmer's Guide

Command Funckion Call‘w:g Sequence

Arguments W de - .. 4
r Hresenved |
f22: “Q*.t&l\g%&“
fed: AFunction Gl

STRING 8IT

EPF (cdmmqnd-‘;ﬂe suﬁrziy. code’ ianONd) ‘RMC.BM.»CO.") m-fm'ft‘.)
7

} !

NALF
N PTR
! l
<g: ™
ol b STRUC
>@: Eccor 2 M
1 | Retucyeq Valve
c| S3274¢
< L_STeuNg

Command Function Calling Sequence
Figure 18-2

Preliminary Release 18-8 First Edition

-

-

Program EPF Calling Sequence

indicates whether the program is being invoked as a command function or
as a normal command. When set (1), function—call indicates that the
invoker expects the program to set rtn—fon—ptr to point to a structure
containing the returned value of the function. When reset (0),
function—call indicates that the invoker does not expect the program to
set rtn—fon-ptr at all, and that in fact the invoker may not have

supplied the rtn—-fa-ptr argument.

Caution

Under no circumstances should your program set rtn-fon-ptr when
function—call is reset (0), nor should your program allocate
storage for the returned value. When function—call is reset
(0), the fifth argument, rtn—fo-ptr, may not be passed to your
program, and any attempt that your program makes to set it may
therefore result in a POINTER FAULTS error ocondition being
signaled, If the fifth arqument is passed, but function—call
is reset (0), then your program may succeed at setting
rtn—-fen-ptr, but the invoking program will not expect it to
point to the returned structure, and will therefore not
deallocate the memory used by the structure.

Returned Value Pointer: If your program has been invoked with the
function—call bit of the calling sequence set (1), then the invoking
program expects your program to return a pointer to a structure that
contains the returned value. The returned value is a text string
0-32766 characters in length. The structure contains a version number
(currently 0) as a HALF INT value and the returned value as a <=32766
STRING value,

Your program must return a pointer returned by one of the two
allocation subroutines described below, ALSSRA or ALCSRA, in
rtn-fon-ptr., The calling program will use the FRESRA subroutine,
described in Chapter 19, to free the storage allocated by ALS$RA or
ALCSRA, by passing to FRESRA the pointer your program returns in

rtn-fan-ptr.

Caution

If your program does not use ALSSRA or ALCSRA to determine the
rtn-fon-ptr pointer, instead using a pointer constructed by

er means, then when the calling program calls FRESRA with
the returned pointer, a fatal error will occur.

The ALSSRA Subroutine

The ALS$RA subroutine allocates sufficient memory to hold the supplied

First Edition 18-9 Preliminary Release

Advanced Programmer's Guide

string value, copies the string valuve into the allocated memory, and
returns the pointer to the allocated memory for use by the program that
invoked the oommand function. The calling sequence for ALSSRA is
illustrated in Figure 18-3.

Your program passes the string value to be returned in wvalue and its
size, in characters, in value-size. ALSS$RA allocates sufficient memory
(at least (value-sizet5)/2 halfwords) to hold the string value, sets
the first halfword of the allocated memory to 0 to indicate a version 0
returned value structure, stores the length of the string in value-size
into the second halfword of the allocated memory, copies the string in
value into the allocated memory starting with the third halfword, and
returns a pointer to the first halfword of the allocated memory in

rtn—fon—ptr.

After calling this subroutine, all your program need do is ensure that
the pointer returned by ALSSRA is returned by the main entrypoint of
your program to the calling program by storing it into the rtn-fon-ptr
argument of the main entrypoint of your program. Then, your program
simply returns to its invoker. The invoking program is responsible for
deallocating the memory allocated by ALSSRA.

The ALCSRA Subroutine

The ALCSRA subroutine is similar to the ALSSRA subroutine, except that
it does not copy the string value into the allocated memory. It leaves
this task to your program, the command function,

The ALCSRA subroutine allocates sufficient memory to hold a string
value of the specified length and returns the pointer to the allocated
memory for use by your program, the command function. The calling
sequence for ALCSRA is illustrated in Figure 18-4.

Your program passes the number of halfwords to be allocated in
halfwords., This value should be at 1least (value-sizet+5)/2, where
value~size is the 1length of the string value to be returned. ALCSRA
allocates the requested number of halfwords to hold the string value,
and returns a pointer to the first halfword of the allocated memory in

After calling this subroutine, your program must set the first halfword
of the allocated memory to 0 to indicate a version 0 returned value
structure, set the second halfword of ‘the allocated memory to the
length of the string value in characters, then copy the string value
into the allocated memory starting at the third halfword of the
allocated memory. Because your program must use the rtn-fan-ptr
pointer to perform these tasks, only programs written in PL1/G and PMA
typically use this interface.

After copying the string value into the allocated memory, your program

must ensure that the pointer returned by ALCSRA is returned by the main
entrypoint of your program to the calling program by storing it into

Preliminary Release 18-10 First Edition

Program EPF Calling Sequence

(ﬁh Allocate and Seit Rebineq Functig, Valve

of

thvm&d
Volu, Retveaed Valve
e l l Ce haractocs)
(¥

STRING
!

& ALS $RA (\M’ve, valve- size rtn-ﬁ:n-pb-)
\

TR

J

STRUC

iy

17 Gersim) |

Retwraed Valye
€327 64

L stemg

-u.hu

(@\ The ALSSRA Subroutine
Figure 18-3

First Edition 18-11 Preliminary Release

Advanced Programmer's Guide

Allocote. Space for Retucned Functiom Valve

Nwﬁlﬂ(‘ Or
Nalfuords to
Allocate
FuLL
INT

|

ALc#RA (halfuerds, rta-foa-ptr)

Halfvord

The ALCSRA Subroutine
Figure 18-4

Preliminary Release 18-12 First Edition

Program EPF Calling Sequence

the rtn—-fon-ptr arqument of the main entrypoint of your program. Then,
your program simply returns to its invoker. The invoking program is
responsible for deallocating the memory allocated by ALCSRA.

Sample Command Functions

The first sample program is a FORTRAN program that returns the
usernumber of the user invoking the program.

SUBROUTINE USRNUM (COMLIN, QODE, IGN, FUNC, RINPTR)
INTEGER*2 (OMLIN(1) ,Q0DE,IGN,FUNC
INTEGER*4 RTNFIR (2)

C

$INSERT SYSCOM>ERRD, INS. FIN

SINSERT SYSQOM>KEYS.INS.FIN

C
INTEGER*2
& U, /* User number; later, units digit of U,
& TIMARR(12), /* TIMDAT array.
& ©STR(2), /* String value containing user number.
& STRLEN, /* Number of characters in STRLEN.
& H, /* Hundreds digit of U.
& T /* Tens digit of U.
C
C Make sure we have no command line.
C
IF (COMLIN(1) .EQ.0) GO TO 10
C
C Reject attempted use of command line.
C
QODE=ESIVCM /* Invalid command error.
IF (AND(FUNC, :100000) .BQ.0) /* Invoked as command?
& CALL ERRPRS(KSIRTN,QODE, '‘No command line accepted',24,
& 'USERNUMBER' ,10)
RETURN /* Return to invoker.,
C
10 CALIL: TIMDAT(TIMARR,12) /* Get user number in TIMARR(12).
U=TIMARR(12) /* For ease of access.
IF (U.GT.9) GO TO 20 /* More than one digit?
STR(1)=IS(U,8)+'0 ' /* Convert to single-digit ASCII.
STRLEN=1 /* Set to 1 digit.
G0 TO 100
C
20 H=U/100 /* Get hundreds digit.
U=U-H*100 /* Get last two digits.
T=U/10 /* Get tens digits.
U=0-T*10 /* Get last digit.

IF (H.NE.0) Q0 TO 30 /* Need three digits?
STR(1)=ILS(T,8)+U+'00" /* No, make two digits into ASCII.
STRLEN=2 /* Indicate two digits,

First Edition 18-13 Preliminary Release

Advanced Programmer's Guide

C .
30 STR(1)=LS(H,8)+T+'00"' /* Make three digits into ASCII.
STR(2)=LS(U,8)+'0 '

STRLEN=3 /* Indicate three digits.,
C
100 IF (AND(FUNC,:100000) .,NE,0) GO TO 200
C
C Not a function call; display user number.
C
CALL TNOUA('Your user number is ',20)
CALL TNOUA (STR,STRLEN)
CALL ™noOU('.',1)
GO TO 300
C
C A function call; allocate and store user number.
C
200 CALI, ALSSRA(STR,INTL(STRLEN) ,RINPTR)
C
C Return to invoker.
C
300 QODE=0 /* Success!
RETURN
C
END

The next sample program, written in PL1l/G, returns the username of the
invoking user.

username: proc (comlin,code,ign,func,rtn_fon_ptr);

dcl comlin char(32) var, /* Must be null, */
code fixed bin(15), /* Severity code. */
ign fixed bin(15), /* Ignored. */
func bit(1), /* Set if function call. */
rtn_fon_ptr ptr; /* Returned function value pointer. */

%include 'SYSCOM>ERRD,INS.PLl';
$include 'SYSQOM>KEYS,INS,.PL1';

dcl wnam char(32) var; /* Trimmed username. */

&l 1 timarr,
2 ignore (12) fixed bin(15), /* Ignore 12 halfwords. */
2 user_name char(32); /* The usemame, */

dcl 1 rtn_struc based(rtn_fon_ptr),
2 version fixed bin(15),
2 value char(32) var;

dcl timdat entry(l,2 (12) fixed bin(15),2 char(32),fixed bin{(15)),

errpr$ entry(fixed bin(15),fixed bin(15) ,char(40),
fixed bin(15) ,char(8) ,fixed bin(15)),

Preliminary Release 18-14 First Edition

Program EPF Calling Sequence

alcSra entry(fixed bin(3l) ,ptr),
tnou entry(char(60) ,fixed bin(15)),
tnoua entry(char(60) ,fixed bin(15));

if comlin='"' then

do; /* No command line. */

call timdat(timarr,28);

unam=trim(user_name, '11'b):;

if func then
do; /* Command function invocation. */
call alc$ra(divide(length(umam)+5,2,15),rtn_fo_ptr);
rtn_struc.version=0;
rtn_struc.value=unam;
end; /* if func */

else
do; /* Command invocation., */
call tnoua('Your user name is ',18);
call tnoua ((unam) ,length (unam)) ;
call tnou('.',1);
end;

code=0; /* Success, */

end; /* if comlin='' */

else

do; /* if ocomlin®='' */

code=e$ivcm;

if “func then
call errpr$(k$irtn,code,'No command line accepted',24,

'USERNAME' ,8) ;
end; /* if comlin®='' */

end; /* username: proc */

DETAILED COMMAND CALLING SEQUENCE

The detailed command calling sequence adds a third arqument to the
ocommand calling sequence described earlier in this chapter. This third
argument is a structure passed to the program EPF being invoked that
includes the following information:

e The command name as entered by the user

e A pointer to CPL local variables, if appropriate

e Command preprocessing information
Typically, a program EPF uses only the portions of the structure that
are applicable to the program. For example, if you wish your program
to display the command name entered by the user, rather than the
original name of your program in error messages, you could have the

main entrypoint of your program use only the command name as entered by
the user and ignore the remainder of the structure.

First Edition 18-15 Preliminary Release

Advanced Programmer's Guide

This remainder of this section describes the information passed in the
third arqument of the program EPF calling sedquence.

Arquments in the Detailed Command Calling Sequence

The detailed command calling sequence accepts three arquments:
1. The command line, an input-only argument
2. The severity ocode, an output-only argument

3. A structure containing command processing information, an
input-only argument

If a program that accepts only these three arguments is invoked as a
command function, no pointer to the returned value is returned.

Figure 18-5 illustrates the command calling sequence, where EPF is the
main subroutine of the program EPF.

Command Line: See the section earlier in this chapter entitled COMMAND
CALLING SEQUENCE for information on the command line. That information
applies to command functions as well,

Severity Code: See the section earlier in this chapter entitled
COMMAND CALLING SEQUENCE for information on the severity code. That
information applies to command functions as well.,

Command Processing Information: Figure 18-6 illustrates the command
processing information, which is described in detail in the next
section,

Currently, two versions of the command processing information structure
are defined, The first two fields, the command name and the version
number, are always present., If version is 0, the remainder of the
command processing information structure is undefined and should not be
referenced; only halfwords 0-17 (0-21 octal) are defined for a version
0 structure, If version is 1, the entire structure is defined as
shown; that is, halfwords 0-25 (0-31 octal) are defined. Future
versions of the structure will have higher version numbers and may
define extensions to version 1 of this structure; however, the content
and meaning of halfwords 0-25 will remain the same.

WARNING

Never store data into the ocommand processing information
structure for any purpose. Some calling programs may have
declared only 18 halfwords of storage for a version 0

Preliminary Release 18-16 First Edition

Program EPF Calling Sequence

Detsiled Command Calliag Se.qvenw

Gmmand Line Gmmand
Afgvment.s | Proc essing
laformati on
€32%¢64
STRING sTRYC

EPF (cn mmand - line, sevenky =code, commond-indormation)

|

HALF
INT
<Q: Warn‘m3
2: No E rror
>9: Erroc

Detailed Command Calling Sequence
Figure 18-5

First Edition 18-17 Preliminary Release

Advanced Programmer's Guide

C ommand ProceSs'm_g ‘n?ormt’n,. (Vehs'»ons # and .1)

Ha\fuerd Hafluerd

oct doc dec oct

2 8 & 0

i < I

20 ig\ Gmmand Name L% STRING i 2 (

28 43) Versor (For 4D HALF W Iz 24

22 8 g ::

z;! l; CPL Local Vagokles Pinter FTR. oy o
24 - ~ACAT | R8¢ ved 24 es

25 g‘_l%f TSEUR lFHrf_' L BIT b_ﬂl Peser J_i BT |

24 22 |yerw|B0f | Peserved 14 &(T e %

4o | dpr | — (ﬂw)

27 23 | ~wx-FRon Vabe HALE INT 23

38 24) -wakTo Valve HALE INT fzq 3¢

sees | | (8| teseed tz 80T 2s 3t

Note For a versin @ strcture, only halfwords 7-1% (v-24 od:.l)

have de¥ined valves,

Command Processing Information

Preliminary Release

Figure 18-6

18-18

First Edition

Program EPF Calling Sequence

structure, representing halfwords 0-17, and any attempt to
store beyond halfword offset 17 may corrupt memory. In
addition, because the structure is an input argument to the
program being invoked, the calling program may place the
structure in memory that is protected against writing.

Your program should check the version number only if it needs to use
information beyond halfword offset 17 (21 octal) into the command
processing structure; and, in such a case, your program should check
only that the version number is not 0 to ensure that the information
being retrieved is valid. Do not reject version numbers higher than 1.
However, if you choose, you may have your program reject version
numbers that are negative, as such numbers probably indicate ocorrupted
memory.

Command Processing Information

This section describes each field in the command processing information
structure shown in Figure 18-6.

Command Name: The oommand name field ocontains the command name as
specified by the user. The name may or may not include the .RIN
suffix, but it will contain only the final element of a pathname. Your
program may use this name rather than the name designed for it in
messages displayed to the terminal, or your program may reject attempts
to invoke it with a name other than that which it was designed to have.

Typically, the command name is the same name specified during the BIND
session that linked the program. However, if a user copies your
program to a file with a different name and invokes the copy, or if the
name of the file ocontaining the program is changed (via QBME for
example) , the ocommand name will be different from the original name of
the program.

Version: The version number field contains the version number of the
command processing structure. Currently, version numbers 0 and 1 are
defined as described above. Higher version numbers will be used if
future versions of PRIM)S extend the command processing information
structure. The following table lists the currently defined version
numbers and the halfwords that are defined (have meaningful values) in
a structure with each version number listed:

Version Defined Halfwords

0 0-17
1 0-25

First Edition 18-19 Preliminary Release

Advanced Programmer's Guide

CPL Local Variables Pointer: The CPL Local Variables Pointer is
provided if the calling program is either a CPL program or a program
EPF provided with a CPL Local Variables Pointer (ultimately invoked by
a CPL program).

Sometimes referred to as the vcb ptr, for Variables Control Block
pointer, this pointer is used only when the program EPF wishes to read
or set a CPL variable that is local to the CPL program that invoked the
program EPF, Typically, such programs are designed as command
functions, and the CPL program uses the &SET VAR directive, as in:

&SET_VAR MYVAR := [RESUME MYPROG]

However, a program that must reference more than one CPL variable must
either be constrained to use only global variables (accessing them via
the GVSGET and GVSSET subroutines) or must use the CPL Local Variables
Pointer along with the LVSGET and LV$SET subroutines. A program
constructed in the latter fashion might be invoked from a CPL program
as follows:

RESUME MYPROG MYVAR OTHERVAR

Here, the MYPROG program accepts two variable names, MYVAR and OTHERVAR
in this example, and accesses them using LVSGET and LV$SET, which are
described (along with GVSGET and GVS$SET) in the Subroutines Reference
Guide.

The CPL, Local Variables pointer is NULL() (7777/0) if the invoking
program is not a CPL program, or if it is not a program EPF invoked by
a CPL program (either directly or via other program EPFs). A valid CPL
Local Variables pointer is generated only by the invocation of a CPL
program, and is valid only while that program is active; only program
EPFs invoked by the CPL program, and their descendants, may use the
Local Variables pointer for that CPL program.

Note

For maximum flexibility, design your program so that it acocepts
either global variables names beginning with a period (.) or
local variable names not beginning with a period (.). Then,
your program would call either GVSGET/GVSSET or IVS$SGET/LVSSET,
depending on what type of variable name is supplied.

-DIRECTORY (-DIR) Bit: The ~DIRECTORY bit is set if the command
processor is matching file directories when checking wildcard-laden
names, It dves not necessarily mean that the file system object
specified in the current invocation is a file directory.

Preliminary Release 18-20 First Edition

Program EPF Calling Sequence

—SEGMENT_DIRECTORY (-SEGDIR) Bit: The -SEGMENT DIRECTORY bit is set if
the command processor is matching segment directories when checking
wildcard-laden names., It does not necessarily mean that the file
system object specified in the current invocation is a segment
directory.

-FILE Bit: The -FILE bit is set if the command processor is matching
files when checking wildcard-laden names. It does not necessarily mean
that the file system object specified in the current invocation is a
file.

-ACCESS CATEGORY (-ACAT) Bit: The -ACESS _CATEGORY bit is set if the
ocommand processor is matching access categories when checking
wildcard-laden names., It does not necessarily mean that the file
system object specified in the current invocation is an access
category.

-RBF Bit: The -RBF bit is set if the command processor is matching RBF
Tiles when checking wildcard-laden names. It does not necessarily mean
that the file system object specified in the current invocation is an
RBF file. (RBF files are reserved for use by Prime,)

-VERIFY (-VFY) Bit: The -VERIFY bit is set if the oommand processor
requires user verification of file system objects selected by
wildcard-laden names. It does not necessarily mean that the user has
verified the file system object specified in the current invocation,
because verification is requested only if the user specifies a
wildcard-laden name. Use the wildcard bit, described below, if you
wish to determine whether the user was actually asked to verify the
current invocation for the file system object — if both the -VERIFY
bit and the wildcard bit are set (1), then verification was both
requested and provided.

-BOTTOM UP (-BOTUP) Bit: The -BOTTOM UP bit is set (1) if the
-BOTTOM _UP option (abbreviatied -BOTUP) was specified on the command
line, causing any treewalking to be performed at the lowest directory
levels first. It does not necessarily mean that treewalking is being
performed; see the treewalking bit, described below, for that
information.

—WALK_FROM (-WLKEM) Value: The -WALK FROM value is set to either the
value specified following the —-WALK_FROM option (abbreviated -WLKFM) on
the command 1line or to the default value, which is 2. Level 1 is the
oontents of the directory itself; level 2 is the contents of the
subdirectories, and so on. For example, in the treewalking
specification DIR1>@@>FO0, level 1 is the DIR1 directory; if FOO
exists in DIR1, it is found only if -WALK FROM 1 is specified.

First Edition 18-21 Preliminary Release

Advanced Programmer's Guide

This value des not indicate whether treewalking is, in fact, being
performed; see the treewalking bit, described below, for that
information.

—WALK_TO (-WLKIO) Value: The -WALK TO value is set to either the value
specified following the -WALK TO option (abbreviated —WLKTO) on the
command line or the default value, which is 999, This value does not
indicate whether treewalking is, in fact, being performed; see the
treewalking bit, described below, for that information.

Iteration () Bit: The iteration bit is set to 'l1'b if the oommand
line used to invoke the program contained an iteration list (that is,
oontained parentheses). However, this bit is never set if the BIND
subcommand NO_ITERATION (abbreviated NITR) was issued when the program
was linked.

Wildcard @ + Bit: The wildcard bit is set to 'l1'b if the command 1line
used to invoke the program contained a wildcard-laden entryname (that
is, contained the @, +, or © character in the final element of a
pathname or in a simple pathname)., However, this bit is never set if
the BIND subcommand NO_WILDCARD (abbreviated NWC) was issued when the
program was linked.

Treewalk >@> >+> Bit: The treewalk bit is set to '1'b if the command
line used to invoke the program contained a wildcard-laden directory
name (that is, if it contained the @, +, or " character in a non-final
element of a pathname)., However, this bit is never set if the BIND
subcommand NO_TREEWALK (abbreviated NIW) was issued when the program
was linked.,

Sample Program

The following sample PL1/G program simply displays all of the
information in the command processing information structure, While it
is intended primarily to illustrate how to declare and use the command
processing information structure in PL1/G, it is also a useful program
for experimenting with various combinations of oommand preprocessing
features and BIND subcommands that enable, disable, or set parameters
for command preprocessing features.

ocom_proc_info: proc(comline,code,cominfo);

dcl comline char(1024) var, /* The command line. */
code fixed bin(15), /* Severity code. */
1 cominfo, /* Command processing info. */
2 comname char(32) var, /* The command name., */

2 version fixed bin(15), /* Currently 0 or 1. */

Preliminary Release 18-22 First Edition

(=
(

Program EPF Calling Sequence

2 vcb_ptr ptr, /* CPL local variables. */
2 preprocessing. info, /* Command preprocessing info, */
3 mod _after_date fixed bin(31),
/* MODIFIED AFTER date. */

3 mod before _date fixed bin(31l),

/* -MODIFIED BEFORE date, */
3 bak after_date fixed bin(31),

/* -BACKEDUP AFTER date, */
3 bak before_date fixed bin(3l), :

/* -BACKEDUP_BEFORE date. ¥*
3 dir bit(1), /* -DIR option specified. */
3 type_segdir bit(1), /* -SEGDIR option specified. */
3 type_file bit(1), /* -FILE option specified. */
3 type_acat bit(l), /* -ACAT option specified. */
3 type_rbf bit(l), /* -RBF option specified. */
3 reserved 1 bit(1l), /* Reserved for future use, */
3 verify_sw bit(l), /* =VERIFY option specified. */
3 botup_sw bit(l), /* -BOTUP option specified. */
3 reserved 2 bit(14), /* Reserved for future use. */
3 walk _from fixed bin(15),

/* —WALK _FROM value. */
3 walk _to fixed bin(15), /* -WALK_TO value. */
3 in_iteration bit(1), /* In iteration sequence. */
3 in wildcard bit(1), /* In wildcard sequence. */
3 in_treewalk bit(l), /* In treewalk sequence. */
3 reserved 3 bit(13); /* Reserved for future use., */

$include 'SYSQOM>ERRD,INS,.PLl';
ginclude 'SYSCOM>KEYS,INS.PL1':

dcl strings fixed bin(15), /* Number of strings. */
last_string char(80) var, /* Last string. */
line_to_show char(80) var; /* Line waiting to be shown. */

dcl (tnoua,tnou) entry(char(80) ,fixed bin(15)),
tovfd$ entry(fixed bin(15));

call tnoua ('Command name is "',17);
call tnoua ((comname) ,length (comname)) ;
call tnouwa('"',l);

if version=0 then
do; /* Version 0 means no more info, */
call tnou('.',1);
code=0;
return;
end;

if version=1 then; /* Expected version number. */
else

d; /* New version, display it. */

call tnoua(', version #',11);

call tovfds$(version);

end; /* if version”=0 */

First Edition 18-23 Preliminary Release

Advanced Programmer's Guide

if vcb ptr=null() then call tnou(', no CPL variables.',19);
else call tnou(', with CPL variables.',2l);

call tnoua('Command line is "',17):
call tnoua((comline) ,length(comline));
call tnou('".',2);

strings=0;
last_string='"';
line_to_show='Options: ';

if mod_after_date=0 then;
else call show_date('-MODIFIED AFTER',mod after_date);

if mod before date=0 then;
else call show_date('-MODIFIED BEFORE',mod before date);

if bak after_date=0 then;
else call show_date('-BACKEDUP_AFTER',bak after_date);

if bak before date=0 then;
else call show_date('-BACKEDUP BEFORE',bak_before date);

if type_dir then call show_this('-DIR'});

if type_seqgdir then call show_this('-SEGDIR') ;
if type_file then call show_this('-FILE');

if type_acat then call show_this('-ACAT');

if type rbf then call show_this('-RBF');

if verify sw then call show_this('-VERIFY');
if botup sw then call show_this('-BOTUP');

if walk _from=2 then; /* The default. */
else call show_value ('-WALK FROM',walk _from);

if walk _to=999 then; /* The default. */
else call show_value('-WALK TO',walk_to):;

if in_iteration then call show_this('iteration');
if in_wildcard then call show_this('wildcard'):;
if in treewalk then call show_this('treewalk’);

/* Show last line if we have shown anything. */

if strings=0 then;
else
if strings=1 then
call tnou('Option: '[|last_string,length(last_string)+8);
else call show_this('');

code=0;
return;

show_date: proc(string,dtm); /* Display option with date/time., */

Preliminary Release 18-24 First Edition

Program EPF Calling Sequence

dcl string char(32) var,
dtm fixed bin(31);

dcl dow fixed bin(15),
dtm_str char(2l):;

dcl cv$fda entry(bin(31) ,bin,char(21));

call cv$fda(dtm,dow,dtm str);
call show_this(string||' '||trim(dtm str,'11'b));

end; /* show_date: proc */

-

show_value: proc(string,value); /* Display option with integer. */

dcl string char(32) var,
value fixed bin(15);

call show_this(stringl|' '||trim(char(value),'ll'b));

end; /* show_value: proc */

e

show_this: proc(string); /* Display string in comma list. */
dcl string char(80) var;

dcl joiner char(6) var;

strings=strings+l;

if strings<=2 then joiner='';
else
if string='' then
if strings<=3 then joiner=' and ';
else joiner=', and '
else joiner=', ';

~e

if length(last_string)+length(line_to_show)+length(joiner)>79 then
d;
if strings<=3 then
call tnou((line_to_show) ,length(line to show));
else call tnou(line to_show||',',length(line_to_show)+l);
if string='' then line_to_show='and '||last_string;
else line_to_show=last_string;
end;
else
line_to_show=line_to_show| |joiner [|last_string;

if string='' then call tnou((line_to_show) ,length(line_to_show)) ;
else last_string=string;

end

-e

/* show_this: proc */

end; /* com proc_info: proc */

First Edition 18-25 Preliminary Release

Advanced Programmer's Guide

(QOMPLETE CALLING SEQUENCE

The complete calling sequence combines the ocommand function calling
sequence with the command processing information provided in the third
arqument of the calling sequence, as used in the detailed command
calling sequence. In the command function calling sequence, described
earlier, the third argument was ignored; in the detailed command
calling sequence, as in the oomplete calling sequence, the third
arqument provides the program with information on the processing of the
command that invoked the program.

Figure 18-7 illustrates the complete calling sequence, where EPF is the
main entrypoint of the program EPF,

The first and second arguments are described in detail in the section
entitled COMMAND CALLING SEQUENCE earlier in this chapter; the third
arqument 1s illustrated in Figure 18-6 and is described in the section
entitled DETAILED C(OMMAND CALLING SEQUENCE earlier in this chapter;
the fourth and £ifth arquments are described in the section entitled
(QOMMAND FUNCTION CALLING SEQUENCE. The remainder of this section
explains why the complete calling sequence is useful and points out
effects of ocombining a command and a command function in one program.

Why Use the Complete Calling Sequence?

A program that uses all five arguments in the complete calling sequence
does so for one of several reasons:

e It is a command function that needs access to CPL variables
local to the CPL program that called it.

e It is a command function that needs access to its own oommand
name,

¢ It is a program that may be invoked as a command function or as
a command, and when invoked as a command, it wishes to make use
of command preprocessing information.

e Any ocombination of the above three reasons, such as a program
that, when invoked as a ocommand, does not need command
processing information, but when invoked as a command function,
needs the CPL Local Variables pointer.

Each of these uses of the complete calling sequence is examined in more
detail in the next section.

Command Function Needing Local CPL Variables

When a oommand function needs access to the CPL variables local to the
CPL program that invoked the command function, it uses the IVSGET and

Preliminary Release 18-26 First Edition

~

Program EPF Calling Sequence

~

f\ Complets Calling Sequence
Gommand
becessing]
Hmﬂﬂn —_‘
Commond Lne T S T
Arguments $\ reserved
| f=8: Nt @ Funciion Gill
.L { F24: A function Gull
$3276¢)
f\ STRING STRiC GJ:T
1A
&PF (C"'“"‘Md-“uc,suerib-cede/ command-information, 'ﬁll\ct?oa-mll, rtn-ftn-phr)
s !
INT PTR
Halfuernd 1
J‘ 2 2 Necsion) by T3
<o Wﬁrﬂw\s 1 Returned Valve }
. H osTeRe
ﬁ No Ertor STRING
> Eccor —
(W\ Complete Calling Sequence
Figure 18-7

First Edition 18-27 Preliminary Release

Advanced Programmer's Guide

LVSSET subroutines to read and set the local CPL variables. An example
of a command function that also sets local CPL variables is the
[OPEN_FILE] function, described in the PRIMOS Commands Reference Guide
and in the CPL User's Guide. Although not an EPF, this function ocould
be written as an EPF as of Rev. 19.4, due to the program EPF interface
described in this chapter.

Command Function Needing Command Name

Rarely, a ocommand function may need access to its command name, if it
wishes to make a distinction (or to enforce an equivalence) between the
name of the program as built during the BIND session that linked the
program and the name of the program as invoked by the user. For
example, when such a program issues messages, it may wish to use its
invocation name, rather than its original name, so that its name may be
easily changed without making error messages originating from the
program more difficult to track down.

Program Usable as a Command and as a Command Function

A program may need to be usable as both a ocommand and as a command
function. In addition, it may need access to ocommand processing
information when invoked as a command, as a command function, or in
both cases.

For example, a program may, when invoked as a command, wish to use
command preprocessing information to generate useful output, dJdepending
upon whether it was invoked using a wildcard, treewalking, or iteration

specification, The same program, when invoked as a command function,-

does not need that information. ‘

It is important to understand that the PRIMDS ocommand processor does
not perform any type of ocommand iteration (including wildcarding,
treewalking, and explicit iteration) when it is called upon to invoke a
program as a command function.

Therefore, a program invoked as a command function should not expect
the command preprocessing information in halfword offsets 21-25 (25-31
octal) in the command processing information structure to oontain any
usable information.

The PRIMDS command processor knows that a command is being invoked as a
ocommand function because its entrypoint, CP$, has a command-function
bit as one of its input arquments. When set, CP$ does not perform any
command iteration on the oommand line; instead, it passes the
untouched command line directly through to the program EPF. (Other
ocommand preprocessing is performed as usual.)

However, a user-written command processor, other than CP$, may invoke a
program EPF as a oommand function, providing useful information in

Preliminary Release 18-28 First Edition

2N

Program EPF Calling Sequence

halfword offsets 21-25 in the command processing information structure
by passing it to EPFSINVK or EPFSRUN. If your program EPF is designed
to be invoked only by such an application, it may use the ocommand
preprocessing iteration information even when invoked as a command
function. This situation is expected to be quite rare,

First Edition 18-29 Preliminary Release

CHAPTER 19

Invoking Programs From Within Programs

A program or library may invoke another command, program, or function.
PRIMDS provides three methods of invoking a program EPF, whether or not
it is a function:

e Via the CP$ subroutine, which invokes the PRIMDS oommand
processor

@ Via the EPFS$RUN subroutine, which invokes any program EPF

e Via the EPFSINVK subroutine, which invokes a program EPF that is
already mapped to memory, allocated, and initialized

You may also use the CP$ subroutine to invoke a command, a program, a
function, a CPL program, a CPL function, or a static-mode program.

This chapter describes how to use these subroutines to invoke commands,
programs, and functions. This chapter also describes how to free the
memory used to store the result of a command function (the FRESRA
subroutine). Finally, this chapter explains particular items of
interest when invoking other commands, programs, or functions,

Commands, Programs, and Functions

There are several ways to categorize, or group, commands and programs
under PRIMDS, For example, one may oconsider Prime-supplied commands
and programs as distinct from user-supplied commands and programs.
However, the PRIMDS ocommand processor provides a uniform interface to

First Edition 19-1 Preliminary Release

Advanced Programmer's Guide

all commands and programs so that the category into which a particular
command or program fits is usually not an important consideration.

Because of the flexibility of the PRIMDS command processor, systems may
add their own commands, Therefore, categorizing commands and programs
by whether they are Prime-supplied is not particularly useful when
writing programs that invoke them.

In fact, there are three ways of categorizing commands and programs
that are most useful:

o Where the programming instructions for the oommand or program
reside

e In which format the programming instructions for the command or
program are stored

e Whether the command or program is invoked as a function

In most cases, the PRIMDS oommand processor allows you to issue
commands and run programs independent of their categorization. The
interfaces described in this chapter, CP$, EPFSRUN, EPFS$INVK, and
FRESRA pertain to different categories of commands and programs:

e CPS$ can invoke any command or program, optionally as a function.

e EPFSRUN and EPFSINVK can invoke only a program EPF, optionally
as a function.

e FRESRA is used only when invoking functions, after the function
has returned its value; it is used independently of the
function location or format,

The categories of commands and programs are described in more detail
next. As you will see, functions are commands or programs that have
additional functionality.

Where the Programming Instructions Reside: The location of the
programming instructions for a command or program is one of the
following:

e Intemal to the PRIMIS Operating System
® On disk, in the CQMDNCO UFD
e On disk, but not in the (MDNCO UFD

The first two places are where commends are stored; the latter place
is where programs are stored. A command residing in the QMDNCO UFD is
just a program in a spec1a1 place, and it may be run as a program; a
program not residing in the OMDNCO UFD may be made into a command
simply by copying it into QMDNCO. Therefore, the distinction between
commands and programs on disk is somewhat hazy; the terms "commang"

Preliminary Release 19-2 First Edition

Invoking Programs From Within Programs

and “program” are often interchangable, and are often used together in
this guide. Some, but not necessarily all, commands and programs are
supplied by Prime.

Internal to PRIMOS are internal commands. These are all
Prime-supplied; Prime does not support the modification of PRIMOS by
custamers, such as to add new intemal oommands. Because internal
commands reside in virtual memory rather than on disk, they are treated
specially by the PRIMOS oommand processor., In fact, some internal
commands have special privileges, such as the ability to access
intermal PRIMDS tables.

While user-written programs cannot always perform the same functions as
intermmal PRIMDS ocommands, such programs can call the PRIMOS command
processor to invoke intermal PRIMOS commands.

A special internal PRIMDS command is the RESUME command, abbreviated R.
The RESUME command is used to run a program. Special processing is
performed by the ocommend processor to treat a RESUME command as the
invocation of a program rather than the invocation of an intemal
PRIMDS ocommand, although this special processing is not usually
important except when handling errors and such.

Format of the Programming Instructions: The format of the programming
instructions for a ocommand or program is important to the PRIMDS
command processor, because it dJdetermines how the oommand processor
invokes the oommand or program. For commands and programs that reside
on disk, there are three formats:

e Executable Program Format (EPF) Runfiles
o Command Procedure Language (CPL) Programs
e Static-mode Runfiles

(A fourth format, the SEG runfile, is not recognized by the PRIMDS
command processor — it is recognized only by the SEG command, which
itself is a static-mode runfile residing in the CMDNCO UFD.)

Whether the PRIMDS command processor is called upon to execute a
command in the OIDNC0O UFD or elsewhere on disk, it uses suffix
searching to scan for the appropriate runfile. The suffixes .RUN,
.SAVE, and .CPL are tried, in that order, and then a search with no
suffix is tried. Based on the suffix that was in place when the
runfile was found, the oommand processor infers the format of the
runfile, as described in Chapter 16.

The most flexible format for programming instructions is the EPF,
because a program written as a program EPF may be a function and in
fact can determine whether it is being invoked as a function and modify
its actions accordingly. In addition, a program EPF can modify CPL
variables local to the CPL program that invoked it. Finally, a program
EPF has the most control over selecting command processing features and

First Edition 19-3 Preliminary Release

Advanced Programmer's Guide

determining which features are in use for a particular invocation.

The second most flexible format is the CPL program., A CPL program can
be written either as a program or as a function. It can also choose
how it will bhandle wildcards, as wildcards are not processed for CPL
programs.

The least flexible format is the static-mode program, A static-mode
program cannot be written as a function. The only control a
static-mode program has over command processing features is by having
its name begin with NX$ or N4$ to disable various combinations of such
features; this requires users to enter the NX$ or MNJ$ prefix when
entering the program name, however,

For commands internal to PRIMDS, there is only one format, and that is
the format of a subroutine, or procedure, that accepts a standardized
calling sequence as its arguments.

Functions: A function returns a value to the invoker of the function.
This value typically replaces the invocation of the function in a CPL
program command line, for example. The difference between a program
that is a function and one that is not is whether the program is
designed to operate as a function and whether the invoker of the
program is invoking it as a function.

For example, the ABBREV -STATUS command, when used as a command, does
not operate as a function — it displays the pathname of the user's
abbreviation file, and the number of abbreviations defined in the file:

OK, ABBREV -STATUS
Abbreviation file: UNGERSLOGIN.ABBREVS
Abbreviations: 183

OK,

When used as a function, however, the ABBREV ~STATUS modifies its
behavior to display nothing to the teminal and to instead return the
pathname of the user's abbreviation file as the wvalue of its
invocation:

OK, TYPE Your abbreviation file is: [ABBREV —STATUS]
Your abbreviation file is: UNGER>LOGIN.ABBREVS
OK,

The displayed output came not from the ABBREV -STATUS invocation, but
from the TYPE command.

The ABBREV -STATUS command is an example of a command that operates as
either a command or as a function, depending on how it is used.

Preliminary Release 19-4 First Edition

(=

Invoking Programs From Within Programs

1

Typically, however, a command or program always operates as one or the
other. For example, another internal command, RDY, operates only as a
ocommand — when invoked as a function, it Sl:lll behaves as a oommand
and returns no value:

OK, TYPE Value of RDY command is: [RDY]
OK 14:33:39 243,024 11.354

Value of RDY command is:

OK,

The first 1line of displayed output came from the invocation of the RDY
command, The second line of output came from the invocation of the
TYPE command, which included a function invocation of RDY that returned
no result because RDY is not a function.

Conversely, a conmand or program may be constructed to run only as a
function., For example, when invoked as a command, the intemal ocommand
SUBSTR produces the following message:

OK, SUBSTR TEST 2 2
May only be invoked as a command function. (SUBSTR)
ER!

Here, the SUBSTR oommand detected that it was not invoked as a
function, displayed an error message, and returned a posulve severity
code (producing the ER! prompt).

Almost all Prime-supplied finctions are commands, either ‘intermal to

"PRIMDS or residing' in QVMDNCO. Functions that are commands are often

called command . functions. Prior to Rev, 19,4, users oould write
functions only- in CPL; as of Rev. 19.4, they may write functions as
program EPFs, Although the term program function can be used to refer
to a function not supplied by Prime, the distinction is not usually
important for readers of this guide; therefore, the temms finction and
command function are used generically to refer to any command or

program that returns a function value when invoked as a function,

Any type of command or program may be written as a function except for
a static-mode program. A restriction for CPL programs is that they
cannot determine whether they are being invoked as functions and modify
their behavior acocordingly; they. must either always assume they are
being invoked as a function or as a program, or they must accept a
command line option that is supplied by the invoker to indicate which
kind of invocation is taking place. Program EPFs can determine which
form of invocation is being used, as described in Chapter 18.

First Edition 19-5 Preliminary Release

Advanced Programmer's Guide

Deciding Which Interface to Use

To write a program, library, or subroutine that invokes another
command, program, or function, you must first decide which interface to
use:

e CPS

e EPFSRUN
e EPFS$INVK
e FRESRA

You make your decision based on what kind of program you wish to
invoke, and whether you wish to use command preprocessing features such
as variable expansion, wildcarding, and name generation,

In summary:

e Use CPS to invoke a PRIMDS command or a program, or to include
command preprocessing features.

e Use EPFSRUN to invoke a program EPF.

e Use EPFSINVK to invoke a program EPF with more control over how
and when the EPF is set up.

e Use FRESRA only if you invoke a function and accept a returned
text string.

Typically, you choose only one of the CP$, EPFSRUN, and EPFSINVK
subroutines; these allow your program to invoke either a program or a
function. After calling a function, your program makes use of the
returned text string., Your program then calls the FRESRA subroutine to
free the memory used to store the returned text string, allowing the
memory to be reused.

When to Use CP$S

You use the CP$ subroutine to invoke:
e Internal PRIM)S commands, such as ASSIGN
e External CPL programs
e Extemal EPFs
e External static-mode programs
Except for external static-mode programs, any of the above may be

invoked as functions.

Preliminary Release 19-6 First Edition

Invoking Programs From Within Programs

Calling CP$ invokes the PRIM)S command processor, STDSCP. This same
command processor is invoked when the user enters a response to the OK,
prompt issued by PRIMDS.

User—defined abbreviations are not expanded by CP$. Therefore, you can
reliably use CP$ in your program without ooncerning yourself with
user-defined abbreviations that might change the meaning of your
command lines, For example, calling CP$S to invoke the ASSIGN MI0
command always invokes that ocommand, even if the user has defined
ASSIGN or M0 as an abbreviation via the PRIMOS abbreviation facility.

The PRIMS command processor, invoked via CP$, determines what command
is being executed as follows:

1. The first token of the command line is parsed. This is the
name of the ocommand being invoked. For example, consider the
command line:

CQOPY FRED>MEMD,12/31/84 *>MEMOS>MEMO,.118

Here, the name of the command is QOPY.

2. The command name is checked against the list of internal PRIMDS
commands, One important internal PRIMOS command is RESUME; if
the command is RESUME, the program specified by the pathname
following the RESUME command is invoked.

If the oommand name is not RESUME, and is found in the list of
intemal PRIMDS ocommands, the appropriate command 1line
preprocessing (such as wildcarding) is performed, and the
internal PRIMDS subroutine that corresponds to the command name
is invoked. The command processor returns to the caller when
the intermal PRIMDS subroutine has finished.

3. If the command name is not in the 1list of internal PRIMIS
commands, the oommand processor searches the CMDNCO directory
for a program with the same name as the command, If found, the
program is executed as if it had been RESUMEA.

When executing a program, the command processor first performs the
appropriate command preprocessing (such as wildcarding), depending upon
the program type. If the program is an EPF, the command preprocessing
is detemined by information within the EPF itself, as built using BIND
subcommands. For information on BIND subcommands that describe the
command preprocessing enviromment for an EPF, see Chapter 17, See the
PRIMDS Commands Reference Guide for information on oommand
preprocessing for static-mode and CPL programs.

First Edition 19-7 Preliminary Release

Advanced Programmer's Guide

Although command programs reside only in the QMDNCO directory, CP$ can
be used to invoke programs residing anywhere on disk by invoking the
internal command RESUME via C(P$. For example, to invoke the program
ACQDUNIS_PAYABLE in the current directory, call CP$ with the following
command line:

RESUME ACCOUNIS_PAYABLE

When to Use EPFSRUN

You use EPFSRUN to invoke a program EPF. As with CP$, you pass the
command line to the target program, but no command preprocessing is
performed on the command line. Therefore, use EPFSRUN when you d not
want any changes to be made to the command line being passed.

EPFSRUN handles all of the tasks needed to execute a program EPF,
including mapping the EPF to memory, allocating the linkage area,
initializing the linkage area, and optionmally removing the EPF from
memory when the invocation has been completed.

When to Use EPFSINVK

You use EPFSRUN to invoke a program EPF that has already been mapped to
memory, allocated and initialized. As with CP$, you pass the command
line to the target program, but no command preprocessing is performed
on the ocommand line. Therefore, use EPFSINVK when you do not want any
changes to be made to the command line being passed.

The advantage of using EPFSINVK over EPFSRUN is that you have more
control over the phases of EPF execution., However, you must call
several other subroutines, described in this chapter, to map the EPF to
memory, allocate the linkage area, initialize the linkage area, and
after invocation to remove the EPF from memory.

When to Use FRESRA

You use the FRESRA subroutine after using CP$, EPFSRUN, or EPFSINVK to
invoke a function only if the returned function pointer is not a null
pointer (segment number 7777). Your program should call FRESRA
sometime after it finishes using the returned function value; this may
be after it makes its own copy of the value, or after it finishes
analyzing the value. If you have used EPFSINVK to invoke the function,
it is not important whether your program calls FRESRA before or after
calling EPF$DEL to remove the EPF.

Preliminary Release 19-8 First Edition

Invoking Programs From Within Programs

THE CP$ SUBROUTINE

There are two ways of using CPS$:

¢ Invoking commands or programs

e Invoking functions
The calling sequence for CP$ has six arquments. When not invoking a
function, you may wish to pass only three arquments; the remaining
three arguments are assigned default values before being passed to the
PRIMDS command processor, STDSCP.
Figure 19-1 illustrates the calling sequence for CP$. The next two

sections describe how to use CP$ to invoke a oommand, program, or
function.

Using CP$ to Invoke a Command or Program

To use the CP$ subroutine to invoke an internal PRIMDS command or a
program, rather than a function, you typically need to supply only the
first three arquments — command-line, code, and severity-code — of
the calling sequence illustrated in Figure 19-1. If you wish to pass a
pointer to local CPL variables, then you must supply five or six
arguments in the calling sequence to include the cpl-local-vars-ptr

argument.

Before calling CP$, your program should initialize the severity-code
argument to 0, in case it is not set by the command or program being
invoked.

When your program calls CP$, the command processor attempts to execute
the command passed in command-line. If it fails to begin execution, a
standard PRIMDS error code is returned in oode. If it sucoeeds in
executing the ocommand, 0 is returned in code, and the status of the
command itself is returned in severity-code.

Ultimately, when the program you invoke via a call to CP$ is a program
EPF, the severity-code argument to CPS corresponds to and is set from
the severity-code argument in the calling sequence for a program EPF,
described in Chapter 18; CPL programs set this value by issuing a
&RETURN directive, and static-mode programs set this value by calling
the SETRCS subroutine.

Note

The returned value of severity—-code is undefined if the
returned value of code is nonzero.

First Edition 19-9 Preliminary Release

Advanced Programmer's Guide

lavoke. a Command, P rogram, o Function (ﬂ

gL 423 - 4¢
‘k

{ | reserved

fag: Not o Cunction Call
———— $34: A Fuackiea Cull
L= @ Evalate Yariable & Fnction Reforeaces
i+ 4: Takibit Evebatio of Veridble

Co 8 Functien Roferences
mmond
Line Pointe 1o Local
ceL UAriaUtab or
(TR @)
€3I2%4¢ e
STRING BiT PTR (’ﬂ)

CP# CCama\qnd-lMgl coie, severity = code, flags cpl-lucalvars- pts, cka~fen-pte)
‘ 4

RALF RALF J,
INTY INT
Stabs From Statis From PTR
Adgmot ta < — — ‘mh:M \l
e Hatfverd STRVC (
2 & (Veion)
1 [Returnes Valve
il s3Ze7P6s
STRING
Calling Sequence of CP$ (ﬂ
Fiqure 19-1

Preliminary Release 19-10 First Edition

Invoking Programs From Within Programs

The Command Line: In command-line, simply pass the command line that
you would type as a user invoking the command. The PRIMOS Commands
Reference Guide contains information on command formats, For example,
to assign a magnetic tape drive for use by a running program, you might
have your program call CP$ with the command line:

ASSIGN MI'0 -WAIT

The RESUME command is a special case, because it is an intermal command
that runs an extermal program. Use the RESUME command to invoke a
program via CP$. For example, to run a program, you might have your
program call CP$ with the command line:

RESUME MYPROG MEMD.03/08/05

Unless you place a tilde in front of the command line, CP$ performs
certain kinds of command preprocessing on command-line before actually
invoking the internal command (although it never modifies command-line
itself)., First, if the command line oontains one or more wnquoted
command separator characters (;), CP$ splits up the command line into
several separately handled command lines,

Then, unless inhibited by the second bit of flags, CP$ resolves command
function references and variable references. Subsequent command
preprocessing depends on the ocommand or program being invoked; for
example, ATTACH does not accept wildcards, but LIST QUOTA does. See
the PRIMOS Comands Reference Guide for information on command
preprocessing support by Prime commands; use the LIST EPF
—COMMAND_PROCESSING ocommand to determine what kind of coommand
preprocessing is performed for a particular program EPF being invoked.

Note

Placing a tilde (~) in front of the command line as passed to
CP$ has the effect of preventing all forms of command
preprocessing, Therefore, calling CP$ with the command line

~“SET._VAR .FOO ROPTION$% is an option; [SET_ 1] is a function.

causes the global variable .FOO to be set to exactly the string
shown. Without the tilde (~), the variable %OPTION% and
command function reference [SET 1] would be evaluated, and the
results substituted in the command line (assuming the variable
and function references succeeded). In addition, the semicolon
after "option" would be treated as a command separator.

First Edition 19-11 Preliminary Release

Advanced Programmer's Guide

The Error Code: The code argument, returned by CP$, indicates the
degree of success encountered by the command processor's attempt to
execute the command. For example, if the command is not found, the
error code e$fntf (Not found) is returned in code.

Any nonzero value returned in oode indicates that all other output
arquments have undefined values, because they all depend upon the
successful invocation of the command.

See the section entitled Error Codes From CP$, later in this chapter,
for a partial list of error codes.

The Severity Code: The severity-code argument, returned by the invoked
command via the command processor and CP$, indicate the degree of
success reported by the invoked command. For example, if you invoke
the ATTACH command to attach to a nonexistant subdirectory, the error
code e$fntf (Not found) is returned in code.

Note

The RESUME oommand is handled by the command processor in a
special way. The target of the RESUME command is the program
to be invoked. If the target program is not found, the error
code is returned in oode, not severity-code as for other
commands (such as ATTACH, OOPY, and so on). This allows the
calling program to distinguish between a missing program and a
program that cannot find the target specified on its command
line.

The Function—Call Bit: The first bit of the flags argument specifies
whether the call to CPS$ is to invoke a function (such as GVPATH or a
user-written function) or not., If flags is not supplied in the calling
sequence, the function—call bit defaults to 0, meaning that a function
invocation is not being made, If flags is supplied, set this bit to 0
to indicate that you are invoking a command or program rather than a
function, (The use of CP$ to invoke a function is described in the
next section.)

The Inhibit-Evaluation Bit: The second bit of the flags argument
specifies whether ocommand function references and variable references
in the command line are to be evaluated. If flags is not supplied in
the calling sequence, the inhibit-evaluation bit defaults to 0, meaning
that such references are to be evaluated. If flags is supplied, set
this bit to 0 if you wish such references to be evaluated, or set this
bit to 1 if you wish such references to not be evaluated and instead
passed to the target program.

The CPL Local Variables Pointer: The cpl-local-vars—ptr argument
provides the necessary "toehold" for the target command or program to

Preliminary Release 19-12 First Edition

Invoking Programs From Within Programs

set CPL variables local to the procedure that invoked your program.
Typically, you either do not supply this argument or you supply the
null pointer (NULL(), which is segment 7777 offset 0). If you do not
pass this argqument, CP$ substitutes the null pointer when calling the
PRIMDS command processor, STDSCP.

If your program may be invoked by a CPL program, and if it is using CP$
to invoke a program that may need to set one or more CPL variables
local to the invoking CPL program, then your program should pass in
cpl-local-vars-ptr the oorresponding pointer passed to its main
entrypoint in the oommand-information structure of the program EPF
calling sequence. (See Chapter 18 for more information on the
command-information structure.)

The Returned Function Value Pointer: The rtn—fon-ptr arcument is not
used when invoking a command or program. It is used only when invoking
a function, that is, when bit 1 of the flags argument is set to 1, as
described in the next section.

Using CP$ to Invoke a Function

The CP$ subroutine may be used to invoke a command function that is
either an internmal PRIMDS command function, such as DATE and GVPATH, or
a user-written command function, written in CPL or as a program EPF.
Whether the ocommand function being invoked is a Prime-supplied command
function or a user-written command function, your program calls CP§ in
the same way.

To use the CP$ subroutine to invoke a function, have your program pass
all six arguments to CP$ as illustrated in Figure 19-1 earlier in this
chapter.

Before calling CP$, your program should initialize the severity-code
argument to 0 and the rtn—fon-ptr to the null pointer (NULL() in
PL1/G), in case these arquments are not set by the function being
invoked.

When your program calls CP$, the command processor attempts to execute
the command passed in command-line. If it fails to begin execution, a
standard PRIMDS error code is returned in oode. If it succeeds in
executing the command, 0 is returned in code, the status of the command
itself is returned in severity-code, and a pointer to the returned text
string structure is returned in rtn—fon—ptr.

Ultimately, when the program you invoke via a call to CP$ is a program

EPF, the rtn—-fon-ptr argument to CP$ ocorresponds to the rtn-fon-ptr

arqument in e calling sequence for a program EPF, described in

%apter 18; CPL programs set this value by issuing a &RESULT
irective.

First Edition 19-13 Preliminary Release

Advanced Programmer's Guide

Notes

1: The returned values of severity-code and rtn-fom-ptr are
undefined if the returned value of code is nonzero,

2: When invoking a ocommand function, no wildcarding,
iteration, or treewalking is performed. In addition, the
command separator character, the semicolon (;) is not
honored — it is treated as any other character.

The Commend Line: In oommand-line, use the RESUME command, or the
ocommand name itself, just as you would when invoking a ocommand or
program. Do not enclose the command line in square brackets ([]) as
you would in a CPL program.

For example, to determine the user's abbreviation file, call CP$ with
the command line:

ABBREV -STATUS

The pathname of the abbreviation file, -OFF, or both is returned in the
structure pointed to by rtn—-fon-ptr, as described below.

To invoke a user-written command function, you might have your program
call CP$ with the following command line:

RESUME PROGRAMS>GET._RECORD 1154 -DATABASE PAYROLL

Adain, the information is returned in a structure pointed to by
rtn_fm—E .

Unless you place a tilde in front of the command line or set the second
bit of flags to 1, CP$ resolves (nested) command function references
and variable references.

The Error Code: The code argument, returned by CP$, has the same
meaning for function invocation as for command or program invocation,
described earlier in this chapter.

The Severity Code: The severity-code argument, returned by the invoked
function via the command processor and CP$, has the same meaning for
function invocation as for command or program invocation, described
earlier in this chapter.

The Function—Call Bit: The first bit of the flags argument specifies
whether the call to CPS$ is to invoke a function (such as GVPATH or a

Preliminary Release 19-14 First Edition

(=

Invoking Programs From Within Programs

user-written function) or not. Set this bit to 1 to indicate a
function invocation.

The Inhibit-Evaluation Bit: The second bit of the flags argument has
the same meaning for function invocation as for oommand or program
invocation, as described earlier in this chapter,

The CPL. lLocal Variables Pointer: The cpl-local-vars-ptr argument has
the same meaning for function invocation as for oommand or program
invocation, as described earlier in this chapter.

The Returned Function Value Pointer: The rtn—fo-ptr argument contains
a pointer to the returned function value when CP$ returns, or the null
pointer if no function value has been returned. Actually, rtn—-fon-ptr
points to a structure that contains the returned value, as illustrated
in Figure 19-1.

Note

If the invoked command did not return a value, then rtn-fon—ptr
may not have modified. Therefore, set it to the null pointer
before calling CP$, and check it after CPS$ returns to make
certain that a result has been returned.

In PL/1, the declaration of the returned function value structure is:

dcl 1 rtn function structure based(rtn-fon—-ptr),
2 version fixed bin(15),
2 text _string char(32766) var;

If version does not oontain 0, d not attempt to use text string,
because a nonzero version indicates a new version of the returned
structure. However, version should contain 0, and text string should
oontain the returned text string.

After using the returned text string, your program should free the
returned text string structure to the pool of available memory. Use
the FRESRA subroutine to do this. FRESRA is described later in this
chapter.

If your program is written in FORTRAN, access to the returned function
value is difficult. Here is a programming discipline that allows a
FORTRAN program to oopy the returned function value, pointed to by an
INTEGER*4 pointer variable named RFNPIR, into an INTEGER*2 array of
characters named RINFCN and a 1length variable named RINLEN. The
maximum number of characters that can be held by RINFCN is set in a
parameter named RTNMAX.

First Edition 19-15 Preliminary Release

Advanced Programmer's Guide

INTEGER*2 GCHAR,IXS,IXD,RTNFCN(512) ,RINLEN, RINMAX
INTEGER*4 RFCPTR

C
PARAMETER RTNMAX=1024

C ee e

..+ CALL CP$ HERE, check error code

Check if the returned pointer is the null pointer.
IF (AND_(RFCPI'R,:l??GOOOOO) .NE, :17760000) GO TO 98710

Null pointer, assume zero-length result.

OO0 aao0an

RTNLEN=0

GO TO 98800 /* Do not call FRESRA with a null pointer!
C
C Have a pointer, see if version 0,

98710 IXS=0 /* Source string index.
IF (GCHAR(RFNETR,IXS)+GCHAR (RFNFTR,IXS) .EQ.0) GO TO 98720
C
C Not version 0, unknown version, assume null value,
C

RTNLEN=0

GO TO 98790 /* Do call FRESRA to deallocate the structure,
C
C Get length of returned function value in RINLEN.
Cc

98720 RINLEN=LS (GCHAR (RFNPTR, IXS) ,8)+GCHAR (RFNPIR, IXS)

Cc

C Now, IXS should be 4 which is the beginning of the value itself,
C Copy the value into RINFCN until the end of the source or the end
C of the destination is reached.

© IF (RINLEN.EQ.0) GO TO 98790 /* Null value!
¢ IXD=0 /* Destination string index.
g Loop until string copied.
88730 CALL SCHAR (LOC (RTNFCN) ,IXD,GCHAR (RFNPTR,IXS))
IF (IXS.LT.RTNLEN,.AND.IXD,LT.RTNMAX) GO TO 98730
g Now free the structure,
(9:8790 CALL FRE$RA (RFNFIR)
¢ pore!

C
98800 QONTINUE

Preliminary Release 19-16 First Edition

Invoking Programs From Within Programs

Error Codes From CP$

An output argqument, code, informs the calling program of the success or
failure of the operation. This argument is a HALF INT value. Symbols
are provided to allow PL1/G, FORTRAN, Pascal, and PMA programs to
substitute mnemonic keywords for numeric values.

If code is 0, the operation was entirely successful. Otherwise, code
has one of many values. Typical values and their meanings follow. Not
all possible error codes are listed; for example, PRIMENET-related
error codes such as ESRLIN (The remote line is down) may be returned by
CP$, but are not listed.

Note

When you use CP$ to invoke a program EPF, either via the RESUME
command or by specifying a program EPF in QMDNCO, an error code
returned by the EPFSRUN subroutine is returned by CPS.
Therefore, consult the list of error codes returned by EPFSRUN,
later in this chapter, for information on additional error
codes returnable by CPS$.

Reyword Value Meaning
<ok> 0 The operation was successful.
ESEOF 1 End of file. Typically, this error

indicates an attempt to invoke a text file
(such as a CPL. file) as a static-mode
program. Alternatively, this error
indicates a file that has been truncated by
FIX DISK during system maintenance
procedures, In the latter case, you must
replace the program with a backup copy.

ESFIUS 3 File in use. Indicates an attempt to run a
program that is open for writing.

ESNRIT 10 Insufficient access rights. You d not
have access to the program.

ESDIRE 14 Operation illegal on directory. Typically,
this error indicates an attempt to invoke a
segment directory, such as a .SEG file,
with the RESUME oommand. Alternatively,
this error indicates an attempt to invoke a
file directory.

ESFNTF 15 Not found. If the command is the RESUME
command, the target program oould not be
found., Otherwise, the command is not an
internal command, and a program with the

First Edition 19-17 Preliminary Release

Advanced Programmer's Guide

same name ocould not be found in QMDNCO.

ESBNAM 17 Illegal name. The RESUME command specifies
a filename not oonforming to filename
syntax rules.

ESITRE 57 Illegal treename, The RESUME command

specifies a pathname not oonforming to
pathname syntax rules.

ESCMND 68 Bad command format. The command name, the
first token on the oommand line, is more
than 32 characters long or does not conform
to filename syntax rules.

ESBARG 71 Invalid arqument to ocommand. The RESUME
command is not followed by a program name,

ESNDAM 109 Not a DAM file. The target program is a
.FUN file, indicating an EPF, but is not a
DAM file, The fault is in the installation
of the program being invoked.

ESBVER 158 Incorrect version number. Typically, this
error means that the oommand function
invoked by the call to CP$S returned a
structure ocontaining an invalid version
number, Alternatively, this error means
that the target EPF contains an invalid
version number. In both cases, the fault
is in the command function, not the calling
program. The ocommand function is an EPF,
because a CPL program should never cause
this error. If the command function is in
fact a CPL program, contact your Custamer
Support Center.

ESNINF 159 No information. You d not have access to
the program.

*** THERE SHOULD BE ONE OR TWO ERROR CODES INDICATING THAT A FUNCTION
REFERENCE OR VARIABLE REFERENCE IN THE COMMAND LINE WAS INVALID.
CQURRENTLY RETURNS "REMOTE LINE DOWN" OR "BAD STARTUP" COLES FOR BAD
VARIABLE REFERENCES, WHICH COME FROM CPL ERROR (ODES. STDSCP SHOULD
TRANSLATE ANY ERRORS FROM EVAI, A INTO A PARTICULAR ERROR CODE. ***

THE EPFSRUN SUBROUTINE

The EPFSRUN subroutine is used in the following manner:

1. The calling program opens the program EPF file to be invoked.

Preliminary Release 19-18 First Edition

Invoking Programs From Within Programs

2. The calling program calls EPF$RUN, passing the file unit number
of the opened program EPF file,

3. The calling program closes the program EPF.

4, After the EPFSRUN subroutine oompletes, the calling program
checks the returned error code to determine whether the program
EPF was successfully invoked by EPFS$RUN,

5. If the error code from EPF$RUN is 0, the calling program uses
the information returned by EPFSRUN to determine whether the
program EPF completed successfully or umnsuccessfully, and
optionally to access the returned text string (if the program
EPF was invoked as a command function).

6. If the error code from EPFSRUN is 0, and the calling program
invoked the program EPF as a ocommand function, the calling
program uses the FRESRA subroutine to return the memory used to
store the returned text string to the free memory pool.

These steps are described in detail below. Following the steps, a
listing of error codes that may be returned by EPFSRUN is presented.

Step 1l: Open the EPF File

Your program must first open the target program EPF file for VMFA-read
before calling EPFSRUN. VMFA stands for Virtual Memory File Access, a
mechanism that provides efficient data retrieval from disk storage by
mapping disk record into memory via the virtual memory mechanism,
PRIMDS implements a limited form of VMFA called read-only VMFA, and
supports this mechanism for use only by the EPF mechanism,

To open the target program EPF file for VMFA-read, use the k$vmr key
when you invoke the SRCHS$$, TSRCS$S, or SRSFX$ subroutines. For
example, a PL1/G program might use the following call:

call srsfx$(k$vmr+kSgetu, '"MY_EPF' ,unit,type,1,'.RIN',basename,i,
code) ;

A FORTRAN program might use the following statement:
CALL -SRCHS$$ (KSVMR+KS$GETU , 'MY_EPF.RUN' ,10,UNIT, TYPE , COLE)

Typically, you add k$getu to the k$vmr key, to specify that a free file
wmit is to be found by PRIMOS. If you do, the file unit number used is
returned in mnit. If you do not add k$getu, you must pass a valid file
wmit number In wit.

First Edition 19-19 Preliminary Release

Advanced Programmer's Guide

If code is 0 when SRSFX$, TSRC$S$, or SRCHSS returns, the file is open
on the indicated file unit. Otherwise, the file is not open, and code
contains an error code indicating the problem. If an error occurred,
EPFSRIUN cannot be called to invoke the EPF, because it is not open.

See the Subroutines Reference Guide for details on the SRSFX$, TSRCSS,
and SRCHSS subroutines.

Step 2: Invoke EPFSRUN

After your program has opened the target program EPF file, it calls
EPFSRUN, Fiqure 19-2 illustrates the calling sequence for the EPFS$SRUN
subroutine.

Although the calling sequence contains eight arguments, there are two
cases in which only the £first three arguments need be passed. The
other five arguments are not used by EPFSRUN or by EPFSINVK (which
EPFSRUN calls to invoke the EPF) — they are simply passed to the main
entrypoint of the program EPF, corresponding to the five arguments in
the complete calling sequence of a program EPF as described in Chapter
18. The two cases in which only the first three arquments to EPFS$RUN
need be passed are:

o When the k$restore only value for key is used, in which case the
target EPF is not actually invoked

e When the main entrypoint of the target EPF is known to accept no
arquments

The arguments for the EPFSRUN subroutine are described below.

The Rey: For key, specify kSinvk, k$invk_del, or kSrestore only. Both
kSinvk and k$invk _del cause the target EPFF to be invoked; however,
kSinvk causes the program EPF to be left in the EPF cache after it
completes, whereas k$invk del causes the program EPF to be removed from
the EPF cache after it completes,

The k$restore only key causes all activities up to, but not including,
the invocation of the program EPF to be performed; use the EPFSINVK
and EPFS$DEL subroutines, described later in this chapter, to oomplete
the process of executing a program EPF.

The EPF cache is a mechanism in PRIMDS to optimize frequent reuse of
EPFs. Therefore, use the kS$invk key if the target program EPF may be
invoked more than once by the program or user. Use the k$invk _del key
if you are certain that the invocation of the target program EPF by the
calling program will be the last such invocation by that user for same
time.

Preliminary Release 19-20 First Edition

Invoking Programs From Within Programs

e Rin a Program EPF
_ Command Line
Arguments
Command
P focessh3
Gile v 'n?wm{:'wn
Number it L2. ... 44
+#|reserved
W l
Ei;:!z:"r‘o.;e :ﬂ’% f'ﬂ tNota Func{:,w\ Gl
- v $327(4 4 24 AFinctn Gall
u‘nf: ulaf_s 571"” a STeve eIT
£ PF#RUN (key, unit, eote, command:ling, sevessty ~code, command "'\“mat}on,(‘uncé‘!"m-mll. rtafen te)
Fi\. W l
INT " ":N.F .
err "r" Ik
. Statvg From J STRVC
Atkempt to Holfuand J
laveke Pﬂ?’mm §.1 & (Version)
-?- Returned Valve
c] <3P
STRING
Stabug Frop,
’Mom Pl‘os"hé_\—)
ﬁ Calling Sequence of EPFSRUN
' Figure 19-2

First Edition 19-21 Preliminary Release

Advanced Programmer's Guide

The File Unit: Pass the file unit on which the target program EPF is
open for VMFA-read (from Step 1) in unit.

The Error Code: When EPFSRUN returns, the value in code indicates the
sucoess or failure of the operation. If code is 0, the target program
EPF was sucoessfully invoked, although it may not have completed
successfully.

If code is not zero, an error occurred while trying to invoke the EPF.
In this case, your program should display an error message (using the
ERRPRS subroutine) and perhaps 1log the error; however, your program
should not make use of any other information returned by EPFSRUN, such
as severity-code or rtn—foen—ptr, because these variables are assigned
only as a result of successful invocation of the EPF.

See the section entitled Error Codes From EPFSRUN, later in this
chapter, for a partial list of error codes.

The Command Line: Pass the oommand line oontaining the ocommand
arguments for the target program EPF in command-line; if there are no
arquments, pass the null string.

Note

Do not include the RESUME command or the program name in the
command-line argument. Otherwise, the target program EPF
treats the RESUME ocommand as the first token in the command
line, and the pathname of the program as the second token,
rather than treating the information following RESUME
program-name as the command line,

The Severity Code: When the EPFSRUN subroutine returns, if code is O,
severity—code contains the severity code of the invoked EPF. ‘The
interpretation of severity-code is strictly dependent on the program
EPF itself; however, it is typically set and interpreted as follows:

Value Meaning
0 Program completed successfully

<0 Successful completion, defined operation
not performed (warning)

>0 Program did not complete successfully (error)

Preliminary Release 19-22 First Edition

Invoking Programs From Within Programs

Note

Because severity-code may not be set by the target program EPF,
preset it to 0 before calling EPFS$RUN, so that the default
value indicates successful oompletion. This is particularly
important when invoking a program that does not use its command
line to receive information, and hence may have a main
entrypoint that does not accept any arguments,

The Command Information: There are currently two versions of the
ocommand information structure that your program can pass. Both of
these versions are illustrated in Chapter 18. Typically, you can pass
a version 0 structure, which contains only the command name and the
version number. If your program must pass a pointer to local CPL
variables, or if your program performs command preprocessing such as
wildcards, it must pass a version 1 structure,

In PL1/G, version 0 the command-information structure is declared as
follows:

dcl 1 command_state static,
2 command name char(32) var init(''),
2 version fixed bin(15) init(0):

In PL1/G, version 1 the command-information structure is declared as
follows:

dcl 1 command state static,

2 command _name char(32) var init(''),

2 version fixed bin(15) init(1),

2 cpl_local_vars_ptr ptr init(null()),

2 cp_iter_info, /* Command iteration info. */

3 mod_after_date fixed bin(31) init(0),

mod before date fixed bin(31) init(0),
bk_after_date fixed bin(31) init(0),
bk_before _date fixed bin(31) init(0),
type _dir bit(l) init('l'b),
type_segdir bit(l) init('l'b),
type_file bit(l) init('l'b),
type_acat bit(l) init('l'b),
type_rbf bit(l) init('0'b),
mbzl bit(11) init('00000000000'b),
verify_sw bit(l) init('0'b),
botup_sw bit(l) init('0'b),
mbz2 bit(14) init('00000000000000'b),
walk_from fixed bin(15) init(2),
walk_to fixed bin(15) init(999),
in_iteration bit(l) init('0'b),
in wildcard bit (1) init('0'b),
in_treewalk bit(1l) init('0'b),

WWWWWWwWwWwWwwuwwwwwww

First Edition 19-23 Preliminary Release

Advanced Programmer's Guide

3 mbz3 bit(13) init('0000000000000'b);

Before calling EPFSRIUN, set oommand _name to the name of the target
program EPF you are invoking (32 characters maximum). If you know the
name of the program while writing the program, you may place the name
in the INITIAL attribute for the declaration of command name. If, in
Step 1, your program called SRSFX$, then store the basename variable,
returned by SRSFX$, in command pame. command name should not contain
the .RUN suffix of the program. The degree of flexibility you have in
setting command name depends solely upon the program EPF you are
invoking; therefore, consult the specification for the appropriate
program,

The INITIAL attributes used above indicate the default settings used by
PRIMDS, If your program is performing wildcard selection, matching,
treewalking, and so on, you may wish to have your program modify
cp_iter_info appropriately.

If the program being invoked references CPL variables local to the CPL
program that invoked it (and therefore the CPL program that invoked
your program EPF), store the pointer passed to the main entrypoint of
your program EPF (in the command-information structure argument) into
%_,local_vars&r before calling EPFSRUN. See Chapter 18 for more

ormation on the command-information structure passed to program
EPFs.

Function Call: The function—call bit indicates to the target EPF
whether it should return a function value. If you do not intend to use
the target program EPF as a command function, set this bit to 0. If
you do intend to use the target program EPF as a command function, set
this bit to 1.

The Returned Function Value Pointer: The rtn-fan-ptr variable has the
same meaning for EPFSRUN as it does for CPS when used to invoke a
function, as described earlier in this chapter,

The EPF Id: The returned value of EPF$RUN, when invoked as a function
that returns a FULL INT value, is an internal PRIMOS identifier of the
EPF that is wvalid only if code is 0 and your program did not supply a
key value of k$invk del. You may use this identifier in subsequent
calls to EPF$CPF, EPFSINVK, and EPF$DEL, which are described below.

You d not need to declare EPFSRUN as a function if you d not intend
to use the returned EPF identifier,

Preliminary Release 19-24 First Edition

http://cp_j.ter_.info

-

Invoking Programs From Within Programs

Step 3: Close the EPF File

After EPFSRUN returns, close the file unit on which the target program
EPF is open by calling SRCH$$. For example:

call clo$fu(unit,i); /* Don't overwrite CODE! */

Note

It is not necessary to repeatedly open and close a program EPF
file when repeated invocations of the EPF are to be performed.
The program EPF file can be opened once, invoked several times
via EPFSRUN, and then closed once.

Step 4: Check the EPFSRUN Error Code

After closing the EPF file, check the returned code value. If code is
0, proceed to step 4. Otherwise, code contains a standard PRIMOS error
code; use ERRPRS or ERTXTS to report the error to the user or to log
the error. A listing of possible error codes that may be returned by
EPFSRUN is provided later in this chapter, following the description of
Step 6.

Step 5: Check the Returned Command Status

After you check the returned error oode, check the returned
severity-code value to determine whether the target program EPF

ocompleted successfully. The exact meaning of severity-code is defined
by the target program EPF. ‘Typically, if severity-code is 0, the
program completed successfully; if severity-code is less than 0, the
program encountered problems or unusual conditions but probably
completed successfully; if severity—-code is greater than 0, the
program completed imsuccessfully.

Step 6: Use and Free the Returned Function Value Structure

If you invoked the target program EPF as a function, if code was set to

0 by EPFSRUN, and if rtn-fon—ptr was not set to the null pointer by the

target program EPF, your program should first use (such as by copying)

the returned function value and then return its structure to the pool

g}t;a available memory. Use FRESRA to do this, as described later in this
pter.

First Edition 19-25 Preliminary Release

Advanced Programmer's Guide

Error Codes From EPFSRUN

An output argument, code, informs the calling program of the success or
failure of the operation. This arqument is a HALF INT variable,
Symbols are provided to allow PL1/G, FORTRAN, Pascal, and PMA programs
to substitute mnemonic keywords for numeric values.

If code is 0, the operation was entirely successful. Otherwise, ocode
has one of many values. Typical values and their meanings follow. Not
all possible error codes are listed; for example, PRIMENET-related
error codes such as ESRLIN (The remote line is down) may be returned by
EPFSRUN, but are not listed.

Note

When you use EPFSRUN which itself invokes other EPF$
subroutines, an error code returned by any of those subroutines
is returned by EPFSRUN. Therefore, consult the lists of error
ocodes returned by EPFSMAP, EPFSALLC, EPFPSINIT, EPFSINVK, and
EPFSDEL, later in this chapter, for information on additional
error codes returnable by EPFSRUN,

Keyword value Meaning
<ok> 0 The operation was successful,
ESEOF 1 End of file. This error indicates a file

that has been truncated by FIX DISK during
system maintenance procedures. You must
replace the program with a backup copy.

ESUNOP 3 Unit not open. There is no file open on
unit., You must open the target program EPF
for VMFA-read before calling EPF$RUN to
invoke the EPF.

ESBKEY 28 Bad key in call. You are not passing a
valid key value to EPFSRUN.

ESBUNT 29 Bad wnit number., You are not pmassing a
valid unit value to EPF$RUN,

ESROOM 55 No roan. You cannot invoke the EPF because
there is insufficient dynamic storage
available to allocate intemal EPF
information. Use the LIST_EPF and
REMOVE_EPF commands to remove inactive
EPFs, thereby freeing up dynamic storage.

ESNMT'S 106 No more temp segments. You cannot invoke

the EPF because you would exceed your limit
on dynamic segments. 'This 1limit is

Preliminary Release 19-26 First Edition

Invoking Programs From Within Programs

displayed using the LIST_LIMITS command.
You should use the LIST_EPF and REMOVE_EPF
commands to remove inactive EPFs, thereby
freeing up dynamic segments, and attempt to
run your program adain. If you need more
dynamic segments, contact your System
Administrator.

ESNMVS 107 No more VMFA segments, You cannot invoke

the EPF because there are insufficient
segments, The ocondition may be temporary,
in which case an attempt to invoke the
target EPF later might succeed. If the
ocondition recurs, coonsult your System
Administrator about increasing the number
of VMFA segments on your system (by
changing the NVMFS configuration directive
in the system startup file).

ES$BVER 158 Incorrect version number, Typically, this

error means that the function invoked by
the call to EPFSRUN returned a structure
oontaining an invalid version number.
Alternatively, this error means that the
version number of the EPF itself is
invalid. In both cases, the fault is in
the target EPF, not the calling program.

THE EPFSINVK SUBROUTINE

The EPF$INVK subroutine provides a more oontrolled, step-by-step
interface to the invocation of a program EPF than does the EPFSRUN
subroutine., In most ways, however, the use of EPFSINVK is identical to
the use of EPFSRUN., This section ooncentrates primarily on the
differences between the use of these two subroutines.

The EPFSINVK subroutine is used in the following manner:

1.
2.

The calling program opens the program EPF file to be invoked.

The calling program calls EPF$MAP to map the EPF to memory,
passing the file wnit number of the opened program EPF file
and obtaining an EPF identifier for use with the other EPF$
subroutines (except for EPFSRUN, described above),

The calling program closes the program EPF.
The calling program optionally calls EPFSCPF to obtain

information on the EPF, such as its selection of command
processing features, passing the EPF identifier.

First Edition 19-27 Preliminary Release

Advanced Programmer's Guide

5. The calling program calls EPFSALIC to allocate the linkage
areas for the EPF.

6. The calling program calls EPFSINIT to initialize the linkage
areas for the EPF,

7. The calling program calls EPFSINVK to invoke the program EPF.

8. After the EPFSINVK subroutine completes, the calling program
checks the returned error ode to determine whether the
program EPF was successfully invoked by EPFSINVK.

9. If the error code from EPFSINVK is 0, the calling program uses
the information returned by EPFSINVK to determine whether the
program EPF ocompleted successfully or unsuccessfully, and
optionally to access the returned text string (if the program
EPF was invoked as a function).

10. TIf the error code from EPFSINVK is 0, and the calling program
invoked the program EPF as a function, the calling program
uses the FRESRA subroutine to return the memory used to store
the returned text string to the free memory pool.

11. The calling program calls EPFSDEL to remove the program EPF
from memory.

Same of these steps are described in the section entitled THE EPFSRUN
SUBROUTINE, earlier in this chapter; Steps 1 and 3 correspond to the
same-numbered steps, while Steps 8 through 10 correspond to Steps 4
through 6 in the aforementioned section., These steps are not described
below,

Step 2 and Steps 4 through 6 correspond to calling the EPFSRUN
subroutine with a key value of k$restore only as described earlier in
this chapter. You may choose to use EPFSRUN rather than EPFSMAP,
EPFSALIC, and EPFSINIT if that is more appropriate for your
application., After calling EPFSRUN with the k$restore only key, close
the program EPF file as described in Step 3, then continue with Step 7
of the above procedure to invoke the EPF.

For repeated invocations of the same program EPF, repeat Steps 6
through 10, It is because avoiding Steps 1 through 5 and Step 11 for
subsequent invocations of an EPF saves time that the use of EPFSINVK is
scometimes preferred over the use of EPFSRUN.

Steps peculiar to the use of EPFSINVK are described in detail below.

Step 2: Invoke EPFSMAP

The calling program calls EPFSMAP to map the EPF to memory, passing the
file wmit number of the opened program EPF file and obtaining an EPF
identifier for use with the other EPF$ subroutines (except for EPFSRUN,

Preliminary Release 19-28 First Edition

Invoking Programs From Within Programs

described above). This oorresponds to Phase 4 of the life of an EPF,
as described in Chapter 1. '

Figure 19-3 illustrates the calling sequence for the EPFSMAP
subroutine.

The EPFSMAP subroutine may be used to map either a program EPF or a
library EPF. Although this chapter does not describe the use of EPF$
subroutines on library EPFs, most of them work identically with library
EPFs as they & with program EPFs. The exception is EPF$INVK, which
supports only the invocation of program EPFs.

The arquments in the EPF$MAP calling sequence are described next.

The Key: Specify either k$any or k$copy for key. (The value kSdbg is
used only by DBG, Prime's source-level debugger. You may use it, but
it only increases the amount of virtual memory used by an EPF compiled
with the -DEBUG option, without providing any additional
functionality.)

The kSany key is most often used, because it specifies that the EPF is
to be mapped to any available segments. The procedure (PROC) segments
of a mapped EPF cannot be modified by a wuser, because they may be
shared between users by PRIMOS. .

The k$co key is used when the invoking program intends to modify the
procedure (PROC) segments of the EPF. Instead of mapping the procedure
segments to memory, k$copy causes EPFSMAP to copy their contents into
memory as for static-mode programs. Use the k$copy key if you plan to
set breakpoints in an EPF via VPSD, for example,

The File Unit Number: Pass the file unit number of the EPF in unit.
This is the unit on which your program opened the EPF runfile for
VMFA-read in Step 1. Once you have called EPF$MAP, you can close this
unit.

The Segment Access: Pass k$rx in access. This represents the desired
segment access. Only one other value is allowed in access, the value
kS$r. However, both kS$rx and k$r result in the same effective segment
access — read and execute access., Therefore, always use Kk$rx access
in case k$r is someday redefined to mean something different (such as
read-only access).

The Error Code: A standard error code is returned in oode. Possible
errors codes are sumarized later in this chapter.

The EPF Identifier: The returned FULL INT value is an identifier of
the mapped EPF that your program passes to subsequent EPF$ subroutines
to identify the EPF.

First Edition 19-29 Preliminary Release

Advanced Programmer's Guide

Map an EPF to Memory

File Dat

" Numbe.r

ANY
$Copy
(e
KsRx

y
Har HALF HALF
wy WNT INT

{
EPF#MAP Ckﬁ.y, Unit, access, code)

3 J
Full HALF
INY INT
‘L Stondard
Ervor
EPF Id Code.

Calling Sequence of EPFS$MAP
Figure 19-3

Preliminary Release 19-30 First Edition

Invoking Programs From Within Programs

Step 4: Invoke EPFSCPF (Optional)

The calling program optionally calls EPFS$CPF to obtain information on
the EPF, such as its selection of command processing features, passing
the EPF identifier to identify the EPF.

Figure 19-4 illustrates the calling sequence of the EPFSCPF subroutine.

The epf-id and code arguments have the obvious meanings. The epf-info
structure, which may be used by your program to select valid command
processing features, has the following declaration in PL/1:

dcl 1 epf_info, /* EPF info data structure */
2 command_flags,
3 wildcards bit(1), /* Enable wildcards. */
3 treewalks bit(1), /* Enable treewalks. */
3 iteration bit(l), /* Enable iteration. */
3 verify bit(l), /* Verify wildcard selections. */
3 file types,
4 file bit(1l), /* Select files, */
4 directory bit(l), /* Select directories. */
4 segdir bit(l), /* Select segment directories, */
4 acat bit(l), /* Select access categories, */
4 rbf bit(l), /* Select RBF files. */
4 reserved bit(7), /* Ignore, */
2 name_generation position fixed bin(15); /* Token #, */

For wildcards, treewalks, and iteration, a bit set to 1 indicates that
PRIMOS is to perform the oorresponding function. For example, if
wildcards is '1'B, PRIMOS intercepts a specification of @@ and expands
the command line to several command lines, one for each file system
object in the directory (as limited by the object selection in
file types). If wildcards is '0'B instead, PRIMOS fpasses a
specification of @@ to the program EPF without modification, and no
expansion takes place due to that specification.

The verify bit is the default setting of the -VERIFY or -NO_VERIFY
(-VFY or -NVFY) options. When 'l'B, the default is ~VERIFY; when
'0'B, the default is -NO_VERIFY. Actual verification takes place only
when wildcards are being processed by the command processor — that is,
when wildcards is set to 'l'B and the command line contains an actual
wildcard specification.

The file types bits indicate the default settings of the -FILE,
—SEGMENT._DIRECTORY (-SEGDIR), -DIRECTORY (-DIR), =ACCESS_CATBGORY
(-ACAT), and -RBF options. A bit set to 'l1'B indicates that the
corresponding file type 1is to be processed. The file s bits are
used only during wildcard processing, as with the veri% bit, For
example, if the oommand RESUME MYPROG XYZ is given, MYPROG is invoked
for the file system object named XYZ even if XYZ is a directory and the
directory bit is reset to '0'B. However, if the command RESUME MYPROG
X¥7@@ is given (and the wildcards bit is '1'B), the X¥Z directory is

First Edition 19-31 Preliminary Release

Advanced Programmer's Guide

Obtaia ‘h‘ﬁrfha‘l'-\ov\ on EFPF

EPF

Td _]
FulL
INT

|

epehche (efmid, epfuinte, coded

! }

STRUC HALF
INT Standard

L—> Error
Gde

Heued 8:t7 WV

ot 1 2 3 4 5 ¢ 7 B 9 48 44 L2 43 44 45 44
. H ' Q *
ﬂ ‘.‘ %‘ “f V‘Py "e d;' s%' e‘t B; - - - - - - -

i Nome Generation Position)

Calling Sequence of EPF$CPF
Figure 19-4

Preliminary Release 19-32 First Edition

Invoking Programs From Within Programs

not selected if directory is '0'B, because wildcard processing is
taking place.

The name_generation position variable is an integer that specifies
which token following the program or command name is to be used as the
name generation source pattern. Normally, this variable is set to 1,
meaning that the first token after the RESUME MYPROG tokens is to be
used as the source pattem. For example, the command line

RESUME MYPROG FOO BAR =

produces an effective command line of:

RESUME MYPROG FOO BAR FOO

However, if name generation position is 2, the second token is used
instead. For example, given the same command line above, the effective
ocommand line produced when name generation position is 2 is:

RESUME MYPROG FOO BAR BAR

For a program EPF installed in QMDNCO, the token count begins at the
same point; that is, following the program name. Therefore, the
following two command lines always produce the same result with regard
to name generation pattern processing:

MYPROG A B =

RESUME CMDNCO>MYPROG A B =

Step 5: Invoke EPFSALLC

The calling program now calls EPFSALIC to allocate the linkage areas
for the EPF, passing the EPF identifier. This step oorresponds to
Phase 5 of the life of an EPF.

Fiqure 19-5 illustrates the calling sequence of the EPFSALLC
subroutine.

The epf-id and code arguments have the usual meanings.

First Edition 19-33 Preliminary Release

Advanced Programmer's Guide

Allocate linkage Aress for EFF

EPF
Id

fFulL
INT

l

EPF8ALLC Cep‘f\-ic{) Code)

J
HALF
INT
| Standard
Err or
Code

Calling Sequence of EPF$ALLC
Figure 19-5

Preliminary Release 19-34 First Edition

J

Invoking Programs From Within Programs

Step 6: Invoke EPFSINIT

The calling program calls EPFSINIT to initialize the linkage areas for
the EPF, passing the EPF identifier. This step corresponds to Phase 6
of the life of an EPF.

Figqure 19-6 illustrates the calling sequence of the EPFSINIT
subroutine,

The epf-id and code arguments have the usual meanings.

The key argument specifies whether a complete initialization is to be
performed., The first time EPFSINIT is called for an EPF that has just
had its linkage allocated via EPFSALIC, key must be set to kS$initall,
which specifies ocomplete initialization. After calling EPFS$INVK, in
the next step, a subsequent invocation of the program requires only a
call to EPFSINIT with a key of kS$reinit to reinitialize only certain
portions of the linkage areas for the EPF before calling EPF$INVK
again,

Specifically, while a ke of k$initall specifies complete
initialization of the linkage areas, a key of kSreinit specifies that
only faulted IPs (dynamic 1links) and static data are to be
reinitialized. ECBs, static IPs, and other nonfaulted IPs are not
reinitialized — once initialized, they d not need to be initialized
again unless the program modifies them during execution (which is
oonsidered poor programming practice).

If a program being invoked by your program seems to fail in strange
ways after the first invocation, have your program use the k$initall
key exclusively to see if the problem is caused by the invoked program
— it might be modifying linkage data that should not be modified once
it has been initialized by EPFS$INIT.

Step 7: Invoke EPFSINVK

The calling program calls EPFSINVK to invoke the program EPF, passing
the EPF identifier. This step corresponds to Phase 7 of the life of an
EPF.

Figure 19-7 illustrates the calling sequence for the EPFSINVK
subroutine,

The epf-id and code arguments have the usual meanings., The remaining
arquments ocorrespond precisely to the same arguments to the EPFSRUN
subroutine, described earlier in this chapter. In fact, as with
EPFSRUN, the latter five arguments may be omitted if the main
entrypoint of the target program EPF does not accept any arquments.

First Edition 19-35 Preliminary Release

Advanced Programmer's Guide

ln\ﬁql'\ze_ Llnk_asq, Aceas for EPF

KRINITALL % EPF
KS RENIT —_1 ! I4
FoLL
“x-f INT

epesINIT Ckey,epf-id, code

l :

HALF
INT
| Stondard
El‘ror

Calling Sequence of EPFSINIT
Figure 19-6

Preliminary Release 19-36 First Edition

Invoking Programs From Within Programs

Im:oke_ a ngmm EfF

Command Line
Argum«:ntﬁ

Command

Pmcessita —

‘nfomd:ion
EPF git 12. ... %
14 flreservad

[£=2: Not. o Function Gl
v ' 4 £21: A Function Cal
€3274¢
F\‘ﬁ:‘f STRING Stevc BIT
N
EPEBINVK. (epi\l:‘\d) code, Com*nd-km., severidy-code, command-trformution, funclisn-call, """‘P‘-"‘Pt')
. .
HALE HALE J
INT INT PTR

f ¢
States From STRVC
Atiempt to Halfor J
[avoke Progrom 4 & (Versiarn)

4 Returned Valve
o s3RT
STRING
Status From l
lavoked Pmaum

Calling Sequence of EPFSINVK
Fiqure 19-7

First Edition 19-37 Preliminary Release

Advanced Programmer's Guide

Step 11: Invoke EPFSDEL

The calling program calls EPF$DEL to remove the program EPF from
memory, passing the EPF identifier., This step corresponds to Phase 10
of the life of an EPF.

Fiqure 19-8 illustrates the calling sequence of the EPFS$DEL subroutine.
The epf-id and code arguments have the usual meanings.

If the EPF is still in use by this process, such as when a user types
Control-P while the program is executing, then the EPF is not removed
and an error code (eSswpr) is returned in code.

The EPF is not actually removed from the system's virtual memory if
other users have the EPF mapped to their memory. However, it is
unmapped from the calling user's memory, and is removed from the
system's virtual memory when the last user unmaps it from his or her
MEmory.

Error Codes From EPFS Subroutines

All of the EPF$ subroutines may encounter errors. In addition, opening
a file for VMFA-read may result in an error that pertains specifically
to the VMFA mechanism rather than the file access mechanism. An output
arqument, code, informs the calling program of the success or failure
of the operation. This argument is a HALF INT value. Symbols are
provided to allow PL1/G, FORTRAN, Pascal, and PMA programs to
substitute mnemonic keywords for numeric values.

If code is 0, the operation was entirely successful. Otherwise, ocode
has one of many values. Typical values and their meanings are listed
for each EPF$ subroutine. Not -all possible error codes are listed;
for example, PRIMENET-related error oodes such as ESRLIN (The remote
line is down) may be returned by one or more of these subroutines, bhut
are not listed.

Error Codes Involving the KSVMR Key: Error codes specific to opening a
file for VMFA-read (using the kS$vmr key) are listed below. Other error
ocodes applying to opening files in general may also be returned.

Keyword Value Meaning
<ok> 0 The operation was sucoessful.
ESNRIT 10 The user has insufficient access to open

the target file for VMFA-read. Currently,
Read access to the file is required.

ESNDAM 109 The target object is not a DAM file; this

Preliminary Release 19-38 First Edition

Invoking Programs From Within Programs

Qemwe. an EPF F(‘om Plemuy

EPF
Id !
Fuu-
INT
\}
EPFSDEL (ep‘r"v d, code)
\!
RALF
T2y
! Standard
Error
Code.

Calling Sequence of EPFS$DEL
Figure 19-8

First Edition 19-39 Preliminary Release

Advanced Programmer's Guide

Error Codes From EPFSMAP:

error code is also returned if an attempt
is made to open the cache directory by
specifying the k$curr wvalue for the
filename or by specifying a null pathname.

are:
Keyword Value
<ok> 0
ESUNOP 3
ESBAR 6
ESBKEY 28
ESBUNT 29
ESNMVS 107
ESNMTS 108
ESNDAM 109
ESNOVA 110
ESBVER 158
ESEPFT 217

Preliminary Release

Meaning
The operation was successful.
The wnit specified in unit is not open.

An invalid segment access has been
specified in access. It must be either
k$rx or ksr.

The value of key is invalid.

The value specified in unit is an invalid
file wnit number.

There are not enough VMFA segments in the
system to accommodate the EPF. If this
errors persists, ocontact your System
Administrator, who may wish to increase the
number of VMFA segments on your system (via
the NVMFS oonfiguration directive in the
system configuration file).

There are no more temporary segments
available into which the EPF procedure
segments can be copied.

The file open on wnit is not a DAM file.

The file open on wit is not open for
VMFA-read. It must be opened using the
k$vmr key.

Invalid EPF version, The file open for
VMFA-read is either a corrupted EPF, not an
EPF, or an EPF generated by a future
revision of PRIMOS that is not supported by
the current revision of PRIMIS,

The file open for VMFA-read on the file
wmit is not a valid EPF. Either the file
oontains a corrupted EPF or is not an EPF
at all, or the file oontains an EPF
generated by a revision of PRIMDS beyond

19-40 First Edition

Error codes that may be returned by EPF$MAP

Invoking Programs From Within Programs

Rev, 19.4 that is not recognized by
- Rev. 19.4 PRIMDS.

ESEPFL 222 The EPF file is too large for the current
EPF implementation. More segments are
required by the EPF than are supported by
the current revision of PRIMDS. If you are
using the -DEBUG option, recompile the
program without the option to reduce its
size, Alternatively, oonsider splitting
the program up into smaller pieces, such as
one program EPF and one or more library
EPFs,

Error Codes From EPFS$CPF: Error codes that may be returned by EPFSCPF

are:
Keyword value Meaning
<ok> 0 The operation was successful.

ESBPAR 6 The epf-id passed represents an EPF that is

no longer mapped to memory.
(ﬁ\ Error Codes From EPFSALIC: Error oodes that may be returned by
EPFSALLC are:
Keyword Value Meaning
<ok> 0 The operation was successful,

ESBPAR 6 The epf-id passed represents an EPF that is
no longer mapped to memory.

ESBVER 158 Invalid EPF version., The EPF is either a
corrupted EPF, not an EPF, or an EPF
generated by a future revision of PRIMDS
that 1is not supported by the current
revision of PRIMDS. Because this condition
is checked by EPFS$MAP, this error is not
likely to occur when calling EPF$ALIC
unless it is called out of sequence.

ESEPFT 217 The EPF is not a valid EPF. Either the

file contains a corrupted EPF or is not an
EPF at all, or the file oontains an EPF
generated by a revision of PRIMOS beyond
6@ Rev. 19.4 that is not recognized by
Rev, 19.4 PRIMDS. Because this ocondition
is checked by EPFSMAP, this error is not

First Edition 19-41 Preliminary Release

Advanced Programmer's Guide

ESILTD

Error Codes From EPFSINIT:

219

likely to occur when calling EPF$ALLC
unless it is called out of sequence.

The EPF contains an invalid linkage
descriptor, The problem is not with the
calling program; this error uswally
indicates a corrupted EPF file,

EPFSINIT are:
Keyword Value
<ok> 0
ESBPAR 6
ESBKEY 28
ESBARG 71
ESBVER 158
ESEPFT 217
ESILTD 219

Preliminary Release

Meaning
The operation was sucoessful.

The epf-id passed represents an EPF that is
no longer mapped to memory.

Either the key arqument is invalid (not
k$initall or k$reinit), or the kSreinit key
is specified bhut the linkage areas for the
EPF have not yet been fully initialized (by
specifying the kSinitall key in a call to
EPFSINIT) .

The EPFS$ALLC has not yet been successfully
called to allocate linkage areas for this
EPF.

Invalid EPF version. The EPF is either a
ocorrupted EPF, not an EPF, or an EPF
generated by a future revision of PRIMIS
that is not supported by the current
revision of PRIMDS. Because this condition
is checked by EPFSMAP and EPFS$ALIC, this
error is not likely to occur when calling
EPFSINIT unless it is called out of

sequence.,.

The EPF is not a wvalid EPF. Either the
file contains a corrupted EPF or is not an
EPF at all, or the file oontains an EPF
generated by a revision of PRIMDS beyond
Rev, 19.4 that 1is not recognized by
Rev. 19.4 PRIMDS., Because this ocondition
is checked by EPFSMAP and EPFSALIC, this
error is not 1likely to occur when calling
EPFSINIT unless it is <called out of
sequence,

The EPF oontains an invalid linkage
descriptor., The problem is not with the

19-42 First Edition

Error codes that may be returned by

Invoking Programs From Within Programs

calling program; this error uswally
indicates a corrupted EPF file.

ESILTE 220 The EPF contains an invalid linkage
descriptor. The problem is not with the
calling program; this error usually
indicates a corrupted EPF file.

Error Codes From EPFSINVK: Error oodes that may be returned by
EPFSINVK including any codes that may be returned by EPFSDEL in
addition to those listed below.

Keyword Value Meaning
<ok> 0 The operation was successful.
ESBEAR 6 The epf-id passed represents an EPF that is

no longer mapped to memory.

ESBVER 158 Invalid EPF version. The EPF is either a
corrupted EPF, not an EPF, or an EPF
generated by a future revision of PRIMIS
that 1is not supported by the current
revision of PRIMDS. Because this condition
is checked by EPF$MAP, EPFSALIC, and
EPFSINIT, this error is not likely to occur
when calling EPFSINVK unless it is called
out of sequence.

ESEPFT 217 The EPF is not a valid EPF. Either the
file contains a corrupted EPF or is not an
EPF at all, or the file oontains an EPF
generated by a revision of PRIMOS beyond
Rev. 19.4 that is not recognized by
Rev, 19.4 PRIMS. Because this ocondition
is checked by EPF$MAP, EPFSALLC, and
EPFSINIT, this error is not likely to occur
when calling EPFSINVK unless it is called
out of sequence.

ESECEB 221 The command enviromment breadth limit has
been reached; the currently running
program can call no more programs. Use the
LIST_LIMITS command to display oommand
enviromment limits, or use the CESBRD
subroutine to determine the command
enviromment breadth 1limit from within a
program.

First Edition 19-43 Preliminary Release

Advanced Programmer's Guide

Error Codes From EPFSDEL: Error codes that may be returned by EPFSDEL
are:

Keywor d value Meaning
<ok> 0 The operation was successful.
ESBPAR 6 The epf-id passed represents an EPF that is

no longer mapped to memory.

ESBVER 158 Invalid EPF version. The EPF is either a
corrupted EPF, not an EPF, or an EPF
generated by a future revision of PRIMDS
that 1is not supported by the cwrrent
revision of PRIMDS. Because this condition
is checked by EPF$MAP, EPFSALLC, EPFSINIT,
and EPFSINVK, this error is not likely to
occur when calling EPFSDEL unless it is
called out of sequence.

ESEPFT 217 The EPF is not a valid EPF. Either the
file contains a corrupted EPF or is not an
EPF at all, or the file ocontains an EPF
generated by a revision of PRIMDS beyond
Rev. 19.4 that is not recognized Ly
Rev, 19.4 PRIMDS. Because this condition
is checked by EPF$MAP, EPFSALLC, FEPFSINIT,
and EPFSINVK, this error is not likely to
occur when calling EPFSDEL unless it is
called out of sequence.

ESSWPR 225 The EPFF is suspended by this user
(process), and hence cannot be wunmapped
from memory. This error code is returned
if a program attempts to call EPFSDEL to
unmap itself.

THE FRESRA SUBROUTINE

After calling CP$, EPF$RUN, or EPFSINVK to invoke a function and after
making use of the returned function value, your program must call
FRESRA to free the memory used to hold the returned function wvalue,
(Call FRESRA only if the function your program invoked actually
returned a function value.)

Figure 19-9 illustrates the calling sequence of FRESRA., Simply pass
the returned function pointer (rtn-fon-ptr).

For information on how returned function values are set, see Chapter
18, including the descriptions of the ALSSRA and ALCSRA subroutines,

Preliminary Release 19-44 First Edition

Invoking Programs From Within Programs

Free o Returned Funchion Valie Struchure

Returped
Fua ction
Poinker
PTR
¢
FrRE&RA < rkn-fen ~ptr)

Calling Sequence of FRESRA
Figure 19-9

First Edition 19-45 Preliminary Release

Advanced Programmer's Guide

SAMPLE PROGRAMS

The first sample program is called SLOW_INVOKE.

It takes an EPF name

and command arquments for the EPF as arguments to the program, and it
then performs each step associated with executing the target EPF,

After each step,

-DETAIL command to see how far it has gotten,
a useful example by itself, this program does illustrate how each step
is performed, and also shows the PL1/G declarations for the appropriate
subroutines and structures.

it pauses so that the user may use the LIST_EPF
Although not necessarily

slow_invoke: proc(x_command line,code,command_state,command flags,
return_function_ptr);

dcl x_command_line char(1024) var,
code fixed bin(15),
1 command_state,
2 com_name char(32) var,
2 version fixed bin(15),
2 vcb_ptr ptr,
2 cp_iter_info,

3

WWWWWWWwWwWwwwwwwwww

3

mod_after_date fixed bin(31),
mod_before_date fixed bin(31l),
bk_after_date fixed bin(31l),
bk_before _date fixed bin(31),
type_dir bit(l),

type_segdir bit(1),
type_file bit(1),

type_acat bit(l),

type_rbf bit(l),

mbzl bit(11l),

verify_sw bit(1),

botup_sw bit(l),

mbz2 bit(14),

walk_from fixed bin(15),
walk_to fixed bin(15),
in_iteration bit(l),
in_wildcard bit(1),
in_treewalk bit(l),

mbz3 bit(13),

1 command_flags,
2 command function call bit(l),
2 mbz bit(15),
return_function ptr ptr;

$include 'SYSQOM>ERRD.INS.PL1';
$include 'SYSQOM>KEYS.INS.PL1';

dcl epf_unit fixed bin(15),
epf_id fixed bin(31),
epf_filename char(128) var,
i fixed bin(15),
command_line char(1024) var,

Preliminary Release 19-46

First Edition

http://irL.tr

Invoking Programs From Within Programs

epf_command_line char(1024) var,
basename char(32) var,

suffix used fixed bin(15),

type fixed bin(15),
command_status fixed bin(15);

dcl errpr$ entry(fixed bin(15) ,fixed bin(15) ,char(80),
fixed bin(15) ,char(80) ,fixed bin(15)),
srsfx$ entry(fixed bin(15) ,char(128) var,fixed bin(15),
fixed bin(15) ,fixed bin(15) ,char(32) var,char(32) var,
fixed bin(15) ,fixed bin(15)),
clo$fu entry(fixed bin(15) ,fixed bin(15)),
tnou entry(cuar(80) ,fixed bin(15)),
epf$map entry(fixed bin(15) ,fixed bin(15) ,fixed bin(15),
fixed bin(15)) returns(fixed bin(31)),
epfSallc entry(fixed bin(31) ,fixed bin(15)), :
epfSinit entry(fixed bin(15),fixed bin(31) ,fixed bin(15)),
epf$invk entry(fixed bin(31) ,fixed bin(15) ,char(1024) var,
fixed bin(15),
1, 2 char(32) var,
2 fixed bin(15),
ptr,
fixed bin(31),
fixed bin(3l),
fixed bin(31),
fixed bin(31),
bit (1),
bit(1),
bit(1),
bit(1),
bit(l),
bit(1l),
bit(l),
bit(1),
bit(14),
fixed bin(15),
fixed bin(15),
bit(1),
bit(1),
bit(1),
bit(13),
1, 2 bit(1),
2 bit(15),
ptr),
epf$del entry(fixed bin(31) ,fixed bin(15));

2
2,

WWWWWWWWWWWWwwWwwwWwwwwWw

oommand_line=trim(x_command line,'ll'b);
i=index(command line,' ');

if i=0 & command line=""'
then do;
code=eS$ivcm;
call errpr$(k$irtn,code, 'Specify EPF filename',20,
'SLOW_INVOKE' ,11) ;

First Edition 19-47 Preliminary Release

Advanced Programmer's Guide

return;
end;

if i=0

then do;
epf_filename=command_line;
epf_oommand_line='"';
end;

else do;
epf_filename=substr (command line,l1,i-1);
epf_command_line=trim(substr (command line,i+l) ,"11'b);
end;

call srsfx$(k$getutk$vmr ,epf filename,epf wnit,type,1,'.RUN',
basename, suf£fix_used,code) ;
if code”=0
then do;
call errpr$(k$irtn,code, (epf_£filename),
length (epf_£ilename) , 'SLON_INVOKE',11) ;
return;
end;

call tnou('SRSFX$ complete',15);
call pause_ne;

epf_id=epfSmap (kany,epf_unit, krx,code) ;

call clo$fu(epf unit,i);

if code”™=0

then do;
call errpr$(k$irtn,code, 'Mapping '||epf_filename,
length (epf_filename)+8, 'SLOW_INVOKE' ,11) ;

return;
end;

call tnou('EPFSMAP complete',16);
call pause_me;

call epf$allc(epf_id,code);
if code™=0
then do;
call clo$fu(epf_unit,i);
call errpr$(k$irtn,code, 'Allocating '||epf_filename,
length (epf_filename)+11, 'SLOW_INVOKE',11) ;

return;
end;

call tnou('EPFSALLC complete',17):;
call pause_me;

call epf$init(k$initall,epf_id,code);
if code”=0
then do;
call clo$fu(epf_unit,i);
call errpr$(k$irtn,code,'Initializing '||epf_filename,

Preliminary Release 19-48 First Edition

Invoking Programs From Within Programs

length(epf_ filename)+13, 'SLOW_INVOKE',11) ;
return;
end;

call tnou('EPFSINIT complete',17);
call pause_me;

command_status=0;

command_state,com_name=basename ;

call epf$invk(epf_id,code,epf_command_line,command_status,

command_state,command_flags, return_function_ptr);
if code™=0
then do;
call cloS$fu(epf_wmit,i);
call errpr$(kSirtn,code, 'Invoking '|lepf_filename,
length (epf_filename)+10, 'SLON_INVOKE',11) ;

return;
end;

call tnou('EPFSINVK complete',17);

call pause_me;

call epfS$del (epf_id,code);

if code™=0

then do;
call cloS$fu(epf_unit,i);
call errpr$(kSirtn,code, 'Removing '||epf_filename,
length (epf_filename)+9, 'SLON_INVOKE' ,11) ;

return;
end;

call tnou('EPFSDEL complete',16);
call pause_me;

code=command_status;
return;

pause_me: proc;
dcl pause_ char(32) var static init(‘'PAUSES');

dcl signl$ entry(char(32) var,ptr options(short),fixed bin(15),
ptr options(short) ,fixed bin(15) ,bit (1) aligned):

call signl$(pause_,null() ,0,null(),0,'1'b);
end; /* pause_me: proc */

end;

First Edition 19-49 Preliminary Release

Advanced Programmer's Guide

The next sample program, called DISPLAY_FEPF _INFO, displays command
processing information for an EPF by mapping it to memory, calling
EPFSCPF, and then removing the EPF from memory. It illustrates how to
process the information returned by EPFSCPF.

display_epf_info: proc(command_line,code,command _state,
ocommand_flags,return_function ptr) ;

dcl command_line char(1024) var,
oode fixed bin(15),
1 command_state,
2 com_npame char(32) var,
2 version fixed bin(15),
1 command_flags,
2 command_function_call bit(1l),
2 mbz bit(15),
return_function ptr ptr;

$include 'SYSCOM>ERRD, INS.PL1';
$include 'SYSQOOM>KEYS.INS.PL1';

dcl epf_unit fixed bin(15),
epf_id fixed bin(31),
epf_filename char(128) var,
i fixed bin(15),
basename char(32) var,
suffix used fixed bin(15),
type fixed bin(15);

dcl errpr$ entry(fixed bin(15) ,fixed bin(15) ,char(80),

fixed bin(15) ,char(80) ,fixed bin(15)),

srsfx$ entry(fixed bin(15) ,char(128) var,fixed bin(15),
fixed bin(15) ,fixed bin(15) ,char(32) var,char(32) var,
fixed bin(15) ,fixed bin(15)),

closfu entry(fixed bin(15) ,fixed bin(15)),

tnou entry(char(80) ,fixed bin(15)),

epfSmap entry(fixed bin(15) ,fixed bin(15) ,fixed bin(15),
fixed bin(15)) returns(fixed bin(31)),

epfSdel entry(fixed bin(31) ,fixed bin(15));

if command_line=''
then do;
code=eS$ivam;
call errpr$(k$irtn,code, 'Specify EPF filename', 20,
(com_name) ,1ength (com_name)) ;
return;
end;

epf_filename=command line;
call srsfx$(k$getutk$vmr ,epf_filename,epf_unit,type,l,'.RUN',

basename,suffix _used,code) ;
if code™=0

Preliminary Release 19-50 First Edition

Invoking Programs From Within Programs

then do;
call errpr$(kSirtn,code, (epf_filename),
length (epf_filename) , (com_name) ,length (com _name)) ;
return;
end;

epf_id=epf $map(kSany,epf_unit,k$rx,code);

call clo$fu(epf_unit,i); /* Close the unit. */

if code”=0

then do;
call errpr$(kSirtn,code, 'Mapping '||epf_filename,
length(epf_filename)+8, (com_name) ,length (com name)) ;

return;
end;

call say_nl(trim(char(epf_id),'11'b));
call show_epf info(epf_id); /* Display the information. */

call epf$del (epf_id,code);
if code”=0 & code”=e$swpr
then do;
call closfu(epf_unit,i);
call errpr$(k$irtn,code, 'Removing '|lepf_filename,
length (epf_filename)+9, (com_name) ,length (com _name)) ;
return;
end;
else if code=e$swpr ,
then call say nl('(Still suspended by this process.)');

code=0;
return;

show_epf_info: proc(epf_id);
dcl epf_id fixed bin(31);

dcl code fixed bin(15),
1 epf_info, /* EPF info data structure */
2 command_flags,
3 wildcards bit(l),
3 treewalks bit(l),
3 iteration bit(1),
3 verify bit(l),
3 file types,
4 file bit(1),
4 directory bit(l),
4 segdir bit (1),
4 acat bit(l),
4 rbf bit(1),
4 reserved bit(7),
2 name_generation position fixed bin(15);

dcl epf$cpf entry(fixed bin(3l),

First Edition 19-51 Preliminary Release

Advanced Programmer's Guide

1, 2, 3 bit(1),
3 bit(1),
3 bit(1),
3 bit(1),
3,
4 bit(1),
4 bit(1),
4 bit(1),
4 bit(1),
4 bit(1),
4 bit(7),
2 fixed bin(15),
fixed bin(15));

/* Call EPFS$CPF to get the information. */

call epf$cpf (epf_id,epf_info,code);

if code™=0 then call errpr$(k$irtn,code,'Calling EPF$CPF',15,
lee @ (com_name) ,length (com_name)) ;
else do;

/* Command processing info, */
call say nl('');
call say nl('Info on '||epf_filename|]|':");
call say nl('');
call say('Command processing:');

if epf_info.wildcards then call say(' wild');
if epf_info.treewalks then call say(' tree');
if epf_info.iteration then call say(' iter');
if epf_info.verify then call say(' viy');

call say nl('');
call say('Object selection:');

if epf_info.file then call say(' file');
if epf_info.directory then call say(' dir');
if epf_info.segdir then call say(' segdir'):;
if epf_info.acat then call say(' acat');
if epf_info.rbf then call say(' rbf');
call say nl('');
call say_nl('Name generation position: '
| [trim(char (name_generation _position),'11'b));
call say pl('');
end;
end; /* show_epf_info: proc */

say: proc(text);

Preliminary Release 19-52 First Edition

Invoking Programs From Within Programs

dcl text char(*) var;

dcl tnoua entry(char(*),fixed bin(15));
call tnoua ((text),length(text));

end; /* say: proc */

say_nl: proc(text);

dcl text char(*) var;

dcl tnou entry(char(*),fixed bin(15));
call tnou((text),length(text));

end; /* say: proc */

end;

IF A PROGRAM INVOKES ITSELF

A program may invoke itself recursively, either directly by calling
itself using CPS, EPFSRUN, or EPFSINVK, or indirectly by calling
another program or collection of programs that ultimately call the

original program.

A program invoking itself recursively via CP$, EPFSRUN, or EPFS$INVK,
whether directly or indirectly, does not necessarily produce the same
results as if it calls itself by invoking its own main entrypoint. 1In
both cases, dynamic storage is allocated and 1initialized for each
invocation., However, static storage is allocated only during program
invocation; it is allocated for all procedures in that program each
time the program is invoked. Once the program is running, no
additional static storage is allocated by PRIMOS,

PRIMDS allocates and initializes one copy of static storage per program
invocation. Static storage includes COMMON and STATIC EXTERNAL areas
except for those explicitly named using the SYMBOL subcommand of BIND.
In addition, static storage oontains subroutine 1linkage pointers,
static data (SAVE or DATA in FORTRAN, STATIC in PL/1), and program
oonstants.

Because PRIMOS separates program invocations so that they cannot
destroy one another's data, one program can be invoked and then
suspended, reinvoked, then the original invocation can be continued by
issuing the START command. The second invocation of the program does
not affect the first invocation of the program; therefore, the results
of the first invocation are essentially unchanged.

First Edition 19-53 Preliminary Release

Advanced Programmer's Guide

Of course, if a program makes use of data that is not in static or
dynamic storage, such as COMMON or STATIC EXTERNAL storage specified
using the SYMBOL ocommend, then separate invocations of the program are
not necessarily independent of each other. Other data not in static or
dynamic storage includes system objects such as attach points, files,
file wits, and so on. PRIMS des not provide a fully recursive
command enviromment, it provides only a separation of per-program data
between program invocations. See Chapter 21 for more information on
this subject.

TERMINAL INPUT AND OUTPUT

Keep in mind that invoking a command from within a program does not
redirect terminal input or output., For example, if you invoke the LD
command from within a program, the output from LD is sent to the user
terminal, and responses to the —More— prompt are solicited from the
user terminal.

Therefore, you may wish to use the COMD$$ subroutine or the internal
PRIMDS command COMOUTPUT to redirect terminal output to a ocommand
output file. To redirect terminal input to a ocommand input file
written by your program, you may use OMI$S or the internal PRIMDS
command COMINPUT; alternatively, when supported by the command, you
may specify an option indicating how to substitute for terminal input.
(For example, LD accepts a -NO_WAIT option, which specifies that
—More— prompts are not to be issued,)

Most functions are designed and written to not perform any temminal
I/0, or to allow the invoking program to disable or redirect terminal
I/0 by specifying command line options.

Preliminary Release 19-54 First Edition

CHAPTER 20

The Command Processor Stack

To be supplied in the First Edition.

First Edition 20-1

Preliminary Release

CHAPTER 21

The Recursive Command Environment

To be supplied in the First Edition.

@'\

First Edition 21-1 Preliminary Release

APPENDIX A

New Features for the Advanced Programmer

To be supplied in the First Edition,

First Edition A-]l Preliminary Release

APPENDIX B

Error Codes and Messages

Listed in this Appendix are the standard PRIMDS file system error
ocodes, The description of each error code is in the form:

» E$xxxx (mn) error-message
description—-of—-error
The mnemonic for the error code is ESxxxx; the value of the memonic
is nn; the error message displayed by ERRPRS for that error code is

error-message; and description—of-error is the description of the
error code,

Mnemonics for error codes are defined by files in SYSQ@M for several
languages:

Language File Name in SYSQOM

FIN ERRD, INS, FIN
Pascal ERRD. INS, PASCAL
PL/1-G ERRD, INS, PL1

PMA ERRD. INS.PMA

You use the appropriate $INCLULE (Pascal and PL/1-G) or S$INSERT (FIN
and PMA) in your program to provide definitions of all the standard
error codes for your program.

First Edition B-1 Preliminary Release

Advanced Programmer's Guide

The Subroutines Reference Guide contains more information on these four
files.

STANDARD FILE SYSTEM ERRCR (ODES

» ESEOF (1) End of file,

Description to be supplied.

» ESBOF (2) Beginning of file,
Description to be supplied.

» ESUNOP (3) Unit not open.
The file unit is closed, or is not open for the type of operation being
requested. For example, an attempt to read from a file that is open
only for writing causes this error, as does an attempt to write to a
file that is open only for reading.

This error code is also returned if an attempt is made to truncate a
file that is not open for writing.

> ESUIUS (4) Unit in use.

Description to be supplied.,

® ESFIUS (5) File in use.

The file system object being accessed is already open on another file
wmit, or by another user., This error occurs if an attempt is made to:

¢ Open an object that is already open by another user or by the
same user on another file unit, and the read/write lock of the
object disallows the attempt

® Rename an object that is open by another user or by the same
user on another file unit

¢ Rename a file directory that is in use as an attach point by any
user

® Set a quota on a nonquota directory that is in use or oontains

Preliminary Release B-2 First Edition

Error Codes and Messages

other files or directories that are in use

e Change the open mode of a file unit, by calling CHS$MOD or SRCHSS
(with the K$CACC key), when the object is open by another user
or by the same user on another file unit and the new open mode
oonflicts with the other open mode

e Truncate a file or segment directory that is open by another
user or by the same user on another file unit

If your program is accessing a file that may occasionally be in use,
oonsider having your program retry the aborted operation several times,
sleeping for a second or so in between each operation. For example:

code=e$fius; /* Assume error. */

do i=1 to 60 while(code=e$fius); /* Up to 60 seconds wait. */
call cmam$$ (oldnam,oldlen,newnam,newlen,code);
if code=e$fius then call sleep$(1000); /* Sleep a sec. */
end;

If you need to be able to read a file while it is being written, you
can change the read/write lock of the file by using the RWIOCK command
or the SATRSS subroutine. The read/write lock is normally SYS, causing
the system default to be used. (The system default is typically EXCL
for "exclusive", meaning "n readers or 1l writer", as described above,)
Changing the read/write lock of a file to UPDT (for "update™) allows n
readers and 1 writer to access the file simultaneously. ¢Changing the
read/write lock to NONE (no lock) allows n readers and m writers to
access the file simul taneously.

See Chapter 12 for more information on the read/write lock.

P ESBPAR (6) Bad parameter.

Description to be supplied.

» ESNATT (7) No UFD attached.
Usually occurs only when the directory to which the user is attached is
removed from the system, as when a disk is shut down. Use one of the

ATS$xxxX subroutines, or the ATTACH or ORIGIN command, to re—establish a
cache attach point.

» ESFDFL (8) Directory too large.

Description to be supplied.

First Edition B-3 Preliminary Release

Advanced Programmer's Guide

» ESDKFL (9) The disk is full.

The operation requires an additional record to be allocated on a disk
partition, but all record on that partition are already allocated.
Use the AVAIL command to display the number of total and availahble
records on a disk partition,

Some operations are nonrecoverable after returning this error oode.
For example, the WILINS subroutine does not restore the file location
pointer to the original location when it encounters this error; the
file location is undefined. Other operations, such as the PRAFSS
subroutine, reset the file location pointer to the value it held before
the disk—full error was encountered.

When designing programs that manipulate data bases, make sure you
design them to handle disk-full and quota-exceeded conditions

correctly, by performing appropriate cleanup before actually returning
the error code to the calling program or to the user,

» ESNRIT (10) Insufficient access rights.
Description to be supplied.

» ESFDEL (11) File open on delete,
An attempt to delete a file directory or a segment directory failed

because the directory was in use by another user or by the same user on
another file unit,

» ESNTUD (12) Not a UFD.,
The attempted operation requires the target file system object to be a
file directory, but it is not a file directory. This error is returned
by the following operations:

e Attach

e Set quota (Q$SET)

e Check for acl vs. non-acl (ISACLS)

® Read directory entry (DIRSRD, ENTSRD, RDENSS)

Preliminary Release B-4 First Edition

-

P ESNISD (13)

Error Codes and Messages

Not a segment directory.

The attempted operation requires the target file system object to be a
segment directory, but it is not a segment directory.

¢ ESDIRE (14)

Operation illegal on directory.

The file being truncated is a segment directory. Segment directories
can be truncated using only SGDRSS.

» ESFNTF (15)

Description to be supplied.

» ESFNTS (16)

Description to be supplied.

b ESBNAM (17)

Description to be supplied.

» ESEXST (18)
Description to be supplied.

» ESDNTE (19)
Description to be supplied.

» ESSHUT (20)
Description to be supplied.

» ESDISK (21)

Description to be supplied.,

First Edition

Not found.

Not found in segment directory.

Illegal name,

Already exists,

The directory is not empty.

Bad shutdown attempted.

Disk I/0 error.

B-5 Preliminary Release

Advanced Programmer's Guide

» ESBDAM (22) Bad DAM file.

Description to be supplied.

» ESPTRM (23) Pointer mismatch found.
Description to be supplied.

» ESBPAS (24) Bad password.
Description to be supplied.

» ESBOOD (25) Bad code in error vector.
Description to be supplied.

» ESBTRN (26) Bad truncate of segment directory.
Description to be supplied.

» ESOLDP (27) 0ld partitions not supported.,
Description to be supplied.

b ESBREY (28) . Bad key in call.
Description to be supplied.

» ESBUNT (29) _ Bad unit number.

The file wmit number supplied is not a valid file wnit number. Note
that file units 1-128 are always valid unit numbers (unless the System
Admninistrator has drastically reduced the number of valid file units by
using the FILUNT directive in the system configuration file)., Larger
file wnits may become valid as a user uses more dynamically allocated
units. File unit numbers less than 1 are invalid in most cases.

Preliminary Release B-6 First Edition

$ ESBSUN (30)
Description to be supplied.

» ESSUND (31)

Description to be supplied.

P ESNMIG (32)
Description to be supplied.

» ESSDER (33)

Description to be supplied.

b ESBUFD (34)

Description to be supplied.

®» ESBFIS (35)

Description to be supplied.

p ESFITB (36)

Description to be supplied.

» ESNULL (37)
Description to be supplied.

» ESIREM (38)

Description to be supplied.

First Edition

B-7

Error Codes and Messages

Bad segment directory umit.

Segment directory unit not open,

Name is too long.

Segment directory error.

The directory is damaged.

Buffer too small.

The file is too long.

Illegal remote reference,

Preliminary Release

Advanced Programmer's Guide

P ESIVIU (39) The device is in use,
Description to be supplied,

» ESRLIN (40) The remote line is down.

The system on which the file resides cannot be reached from the local
system, Therefore, no disks on that remote system can be accessed.

» ESFUIU (41) All file units in use.
No more file units are available for the calling process., This usually
indicates that the program is not closing units it has finished using,
since the number of available file units is usually very large.

This error may also indicate that a remote system being used by the

calling process has run out of file units on which to handle this
process's remote requests,

» ESDNS (42) . Device is not started,

Description to be supplied.

» ESTMUL (43) Too many subdirectory levels.
Description to be supplied.

» ESFBST (44) FAM - bad startup.
Description to be supplied.

» ESBSGN (45) Invalid segment number.
Description to be supplied,

» ESFIFC (46) Invalid FAM function code.

Description to be supplied,

Preliminary Release B-8 First Edition

Error Codes and Messages

¢ ESTMRU (47) Maximum remote users exceeded.

Description to be supplied.

» ESNASS (48) Device not assigned.

Description to be supplied.,

» ESBFSV (49) Bad FAM SVC,
Description to be supplied.

» ESSEMD (50) Semaphore overflow.
Description to be supplied.

® ESNTIM (51) No timer.
Description to be supplied.

® ESFABT (52) FAM - aborted.

Description to be supplied.

» ESFONC (53) FAM - operation not complete.

Description to be supplied.

P ESNPHA (54) No phantams are availahble.

Description to be supplied.,

» ESROOM (55) No roam.

Description to be supplied.

First Edition B-9 Preliminary Release

Advanced Programmer's Guide

» ESATPR (56) Disk is write—protected.

On a write—protected disk, a file can neither be opened for writing nor
be created., (A disk is write-protected by using the ADDISK command,
described in the System Operator's Guide, Volume II.)

» ESITRE (57) Tllegal treename,

This indicates that the pathname supplied to TSRC$$ does not conform to
the syntax rules for a pathname. See the Prime User's Guide for a
description of the syntax of a pathname.

b ESFAMU (58) FAM - already in use.

Description to be supplied,

» ESTMUS (59) Max number of users exceeded.

Description to be supplied,

» ESNQOM (60) Null command line.
Description to be supplied,

P ESNFLT (61) Unable to £ind fault frame.
Description to be supplied,

» ESSTKF (62) Bad stack format.
Description to be supplied.

» ESSTKS (63) Bad stack format signalling.
Description to be supplied.

» ESNOON (64) No on—~unit found.

Preliminary Release B-10 First Edition

5

Description to be supplied.

» ESCRIL (65)
Description to be supplied.

P ESCROV (66)
Description to be supplied.

» ESCRUN (67)
Description to be supplied.

» ESCMND (68)
Description to be supplied.

» ESRCHR (69)
Description to be supplied.

14

» ESNEXP (70)
Description to be supplied.

» ESBARG (71)
Description to be supplied.

» ESCSOV (72)
Description to be supplied.

». ESNOSG (73)

First Edition

Error Codes and Messages

Fatal error in crawlout.

Stack overflow in crawlout.

Crawlout wmmwind failed,

Bad command format,

Reserved character.

Bad use of EXIT.

Invalid argument to command.

Concealed stack overflow,

Segment does not exist.

B-11 Preliminary Release

Advanced Programmer's Guide

Description to be supplied.

P ES$TRCL (74)
Description to be supplied,

» ESNIMC (75)
Description to be supplied,

» ESDNAV (76)
Description to be supplied.

» ESDATT (77)
Description to be supplied.

» ESBDAT (78)
Description to be supplied.,

» ESBLEN (79)

Description to be supplied,

» ESBDEV (80)
Description to be supplied.

» ESQLEX (81) -
Description to be supplied.

» ESNBUF (82)

Preliminary Release

B-12

Command line truncated.

No SMLC [MC channels,

Device not available.

Device already attached.

Bad output data.

Bad length,

Bad device number,

Queue length exceeded.

No. buffer space.

First Edition

—

Description to be supplied.

» ESINWT (83)
Description to be supplied.

» ESNINP (84)
Description to be supplied.

» ESDFD (85)

Description to be supplied.

» ESDNC (86)
Description to be supplied.

» ESSICM (87)

Description to be supplied.

» ESSBCF (88)

Description to be supplied.

» ESVKBL (89)
Description to be supplied.

» ESVIA (90)
Description to be supplied.

> ESVIGA (91)

First Edition

Error Codes and Messages

Input waiting.

No input available,

Device forcibly detached.

DPTX not configured.

Illegal 3270 command.

Bad copy FROM device number,

Keyboard locked.

Invalid AID byte.

Invalid cursor address.

B-13 Preliminary Release

Advanced Programmer's Guide

Description to be supplied.

» ESVIF (92)
Description to be supplied.

» ES$VFR (%)
Description to be supplied.

> ESVFP (94)
Description to be supplied.

» ESVPFC (95)

Description to be supplied.

» ESVNFC (96)
Description to be supplied.

» ESVEEF (97)
Description to be supplied.

» ESVIRC (98)
Description to be supplied.

> ESIVCM (99)

Description to be supplied.

» ESDNCT (100)

Preliminary Release

B-14

Invalid field address.

Field required,

Field prohibited.

Protected field check,

Numeric field check.

Past end of field.

Invalid read mod character,

Invalid command.

Device not oconnected.

First Edition

Description to be supplied.

» ESBNWD (101)
Description to be supplied.

» ESSGIU (102)
Description to be supplied.

» ESNESG (103)
Description to be supplied.

» ESSDUP (104)

Description to be supplied.

> ESIWN (105)

Description to be supplied.

» ESWAIN (106)
Description to be supplied.

» ESNMVS (107)
Description to be supplied.

» ESNMIS (108)
Description to be supplied.

> ESNDAM (109)

First Edition

Error Codes and Messages

Bad number of words.

Segment in use,

Not enough segments,

Duplicate segment number,

Invalid VMFA window number,

Window already in address space.

No more VMFA segments.

No more temp segments,

Not a DAM file,

B-15 Preliminary Release

Advanced Programmer's Guide

Description to be supplied.

> ESNOVA (110)
Description to be supplied.

» ESNECS (111)
Description to be supplied.

P ESNRCV (112)
Description to be supplied.

» ESUNRV (113)
Description to be supplied.

» ESUBSY (114)
Description to be supplied.

» ESUDEF (115)
Description to be supplied.

» ESUADR (116)
Description to be supplied.

» ESPRTL (117)
Description to be supplied.

® E$NSUC (118)

Preliminary Release

Not open for VMFA.

Not enough contiguous segments,

Requires receive enabled.

User not receiving now.

User busy, please wait.

User unable to receive messages.

Unknown addressee,

Operation partially blocked.

Operation unsuccessful,

B-16 First Edition

Error Codes and Messages
Description to be supplied.

» ESNROB (119) No roam in output buffer,

Description to be supplied.

» ESNETE (120) Network error detected.

This indicates that a problem with a remote file access has occurred.
It is possible that trying the operation again might be successful. If
not, it may be necessary for the user to close all remote file units on
the remote system and to issue the ORIGIN command before retrying the
remote access.

> ESSHIN (121) Disk has been shut down.

The disk on which the file resides has been shut down (using the SHUTDN
command as described in the System Operator's Guide, Volume II). The
disk is no longer available for use, until the system operator uses the
ADDISK command to add the disk again.

» ESUNOD (122) Unknown node (PRIMENET).

Description to be supplied.

» ESNDAT (123) No data found.
Description to be supplied.

b ESENQD (124) ‘ Enqueued only.
Description to be supplied.

» ESPHNA (125) Protocol handler not available.
Description to be supplied.

» ESIWST (126) ESINAT enabled in config.

First Edition B-17 Preliminary Release

Advanced Programmer's Guide

Description to be supplied.

» ESBKFP (127) Bad key for this protocol.
Description to be supplied.

» ESBPRH (128) Bad PH specified in config.
Description to be supplied.

» ESABTI (129) I/0 abort in progress.

Description to be supplied.

» ESILFF (130) Illegal IPTX file format.
Description to be supplied,

» ESIMED (131) Too many emulate devices,
Description to be supplied.

» ESDANC (132) DPTX already oconfigured.
Description to be supplied.

» ESNENB (133) Remote node not enabled.
Description to be supplied.

> ESNSLA (134) No NPX slaves available.
The remote system on which the file resides has become overloaded with

remote file access requests, The operation may be attempted later,
with possible success.

Preliminary Release B-18 First Edition

~~

;
:ik

Error Codes and Messages

» ESPNTF (135) Procedure not found.

Description to be supplied,

» ESSVAL (136) Slave validation error.

The user's remote ID for the system on which the file resides is
incorrect. The user must use the ADD REMOTE_ID command, described in
the PRIMDS Commands Reference Guide, to establish the correct remote ID
for the system. Until then, all attempts to access data on that remote
system will fail with this error code.

» ESIEDI (137) I/0 error or device interrupt,

Description to be supplied.

» ESWMST (138) Warm start occurred.
Description to be supplied.

» ESDNSK (139) Pio instruction did not skip.

Description to be supplied.

» B$RSNU (140} Remote system not up.

The remote system on which the file resides is in the process of
starting up, but is not yet honoring remote file access requests. A
remote system honors remote file access requests once the operator
SETIME command has been issued at the supervisor terminal for that
system, See the System Operator's Guide, Volume II for details on the
SETIME command.

P ESSI8E (141)
Description to be supplied.

» ESNFOB (142) No free quota blocks,
Description to be supplied.

First Edition B-19 Preliminary Release

Advanced Programmer's Guide

> ESMXOB (143)
Description to be supplied.

» ESNOQD (144)
Description to be supplied.

» ESQEXC (145)
Description to be supplied.

» ESIMFD (146)

Description to be supplied.

» ESNACL (147)
Description to be supplied.,

» ESPNAC (148)
Description to be supplied.

> ESNTFD (149)
Description to be supplied.

» ESIACL (150)
Description to be supplied.

» ESNCAT (151)
Description to be supplied.

Preliminary Release

B-20

Maximum quota exceeded.

Not a quota disk.

Quota set below current usage.

Operation illegal on MFD.

Not an ACL directory.

Parent not an ACL directory.

Not a file or directory.

Entry is an access category.

Not an access category.

First Edition

(=

Error Codes and Messages

> ESLRNA (152) o Cannot access like reference.

Description to be supplied.

» ESCPMF (153) Category protects MFD.

Description to be supplied.

» ESACBG (154) ACL too big.

Description to be supplied.,

» ESACNF (155) . Access category not found.

Description to be supplied.

C@\ » ESLRNF (156) Like reference not found,

Description to be supplied.

» ESBACL (157) Incorrect access control list format,

Description to be supplied.

» ESBVER (158) Incorrect version number,

Description to be supplied.

» ESNINF (159) - No information.

Description to be supplied.

(ﬁ"\ » ESCATF (160) Directory still oontains access categories.
Description to be supplied.

First Edition B-21 Preliminary Release

Advanced Programmer's Guide

» ESADRF (16l)

Description to be supplied.

» ESNVAL (162)
Description to be supplied.

» ESLOGO (163)
Description to be supplied.

> ESNUTP (164)
Description to be supplied.

» ESUTAR (165)
Description to be supplied.

» ESUNIU (166)
Description to be supplied.

» ESNFUT (167)
Description to be supplied.

» ESUAHU (168)
Description to be supplied.

» ESPANF (169)
Description to be supplied.

Preliminary Release

B-22

Directory still contains ACL subdirectories,

Validation error.

No unit table for phantam.

Unit table already returned.

Unit table not in use,

No unit table available.

User already has unit table.

Priority ACL not found.

First Edition

(
=

¢

Error Codes and Messages

» ESMISA (170) Missing argument to command.
Description to be supplied.

» ESSCOM (171) System console command only.

Description to be supplied,

» ESBRPA (172) Bad remote password.
Description to be supplied.

» ESDINS (173) Date and time not set.

Description to be supplied.

» ESSPND (174) Remote procedure call still pending.

Description to be supplied.

» ESBCFG (175) Network config. mismatch or slave validation error

The remote system on which the file resides does not agree with the
network configuration of the local system., See the System
Administrator's Guide, or your System Administrator, for assistance.

» ESBMOD (176) Illegal access mode,
Description to be supplied.

» ESBID (177) Illegal identifier.
Description to be supplied.

P ESSTI9 (178) Disk format does not support this revision of PRIMIS.

First Edition B-23 Preliminary Release

Advanced Programmer's Guide

Description to be supplied.

» ESCIFR (179)
Description to be supplied.

» ESDFPR (180)

Description to be supplied.

)lmmm(mn

Description to be supplied.

» ESBLUE (182)
Description to be supplied.

» ESNDFD (183)
Description to be supplied.

> ESWFT (184)
Description to be supplied.

» ESFIMM (185)
Description to be supplied.

» ESFER (186)
Description to be supplied,

» ~ ESBIV (187)

Preliminary Release

Object is category-protected.

Object is default-protected.

File is delete—protected.

Bad LUBTL, entry.

No driver for device.

Wrong file type.

Format/data mismatch.

Bad format,

Bad dope vector.

B-24 First Edition

Error Codes and Messages

Description to be supplied.

» ESBFOV (188) FSIOBF overflow,

Description to be supplied.

P ESNFAS (189) Top—-level directory not found or inmaccessible.

The first directory name supplied in the pathname could not be located
on any of the system disks. ,

> ESAPND (190) Asynchronous procedure still pending.
Description to be supplied.

» ESBVCC (191) Bad virtual circuit clearing.

Description to be supplied.

» ESRESF (192) Improper access of restricted file,

Description to be supplied.

» ESMNPX (193) Illegal multiple hops in NPX
Description to be supplied.

» ESSYNT (194) SYNTanx error
Description to be supplied.

» ESUSTR (195) : Unterminated STRing
Description to be supplied.

First Edition B-25 . Preliminary Release

Advanced Programmer's Guide

> ESWNS (19)
Description to be supplied.

» ESIREQ (197)
Description to be supplied.

> ESVNG (198)
Description to be supplied.

» ESSOR (199)

Description to be supplied.

» ESTMVV (200)
Description to be supplied.

» ESESV (201)
Description to be supplied.

» ESVABS (202)
Description to be supplied.

» ESBCLC (203)
Description to be supplied.

® ESNSB (204)
Description to be supplied.

Preliminary Release

B-26

Wrong Number of Subscripts

Integer REQuired

Variable Not in namelist Group

Subscript Out of Range

Too Many Values for Variable

Expected String Value

Variable Array Bounds or Size

Bad Compiler Library Call

NSB labelled tape was detected

First Edition

-

» ESWSLV (205)
Description to be supplied.

» ES$VOGC (206)
Description to be supplied.

P ESMSLV (207)
Description to be supplied.

» ESIDNF (208)
Description to be supplied.

» ESNACC (209)
Description to be supplied.

» ESUIMA (210)
Description to be supplied.

» ESUIMC (211)
Description to be supplied.

P ESBLEF (212)
Description to be supplied.

» ESBLET (213)
Description to be supplied.

First Edition

Error Codes and Messages

Slave ID mismatch,

Virtual circuit got cleared.

Exceeds the MAX number of slaves/user.

Slave ID number not found.

Not accessible,

Not Enough IMA channels,

Not Enough IMC channels,

Bad tape record length and EOF.

Bad tape record length and EOT.

B-27 Preliminary Release

Advanced Programmer's Guide

»° ESALSZ (214)
Description to be supplied.

» ESFRER (215)

Description to be supplied,

» ESHFER (216)

Description to be supplied.

» ESEPFT (217)

Description to be supplied.

» ESEPFS (218)
Description to be supplied.

» ESILTD (219)

Description to be supplied.

» ESILTE (220)

Description to be supplied.

» ESECEB (221)
Description to be supplied.

b ESEPFL (222)
Description to be supplied.

Preliminary Release

ALIOCATE request too small.

FREE request with invalid pointer,

User storage heap is corrupted.

Invalid EPF type.

Invalid EPF search type.

Invalid EPF LTD linkage descriptor.

Invalid EPF LTE linkage descriptor.

Exceeding command enviromnment breadth,

EPF file exceeds file size limit,

B-28 First Edition

{

» ESNTA (223)

Description to be

» ESSWPS (224)
Description to be

» ESSWER (225)
Description to be

> ESADOM (226)

Description to be

» ESUAFU (227)

Description to be

» ESFIDC (228)

Description to be

¢ ESINDL (229)

Description to be

» ESPEOF (230)
Description to be

First Edition

Error Codes and Messages

EPF file not active for this user,

supplied.
EPF file suspended within program session.

supplied.
EPF file suspended within this process.

supplied.
System Administrator command only.

supplied.
Unable to allocate file unit

supplied.
File inconsistent data count

supplied.
Insufficient Dam index levels

supplied.
Past End Of File

supplied.

B-29 Preliminary Release

	Chapter 18
	Program EPF Calling Sequence
	18-1
	18-2
	18-3
	18-4
	18-5
	18-6
	18-7
	18-8
	18-9
	18-10
	18-11
	18-12
	18-13
	18-14
	18-15
	18-16
	18-17
	18-18
	18-19
	18-20
	18-21
	18-22
	18-23
	18-24
	18-25
	18-26
	18-27
	18-28
	18-29
	Chaper 19
	Invoking Programs From Within Programs
	19-1
	19-2
	19-3
	19-4
	19-5
	19-6
	19-7
	19-8
	19-9
	19-10
	19-11
	19-12
	19-13
	19-14
	19-15
	19-16
	19-17
	19-18
	19-19
	19-20
	19-21
	19-22
	19-23
	19-24
	19-25
	19-26
	19-27
	19-28
	19-29
	19-30
	19-31
	19-32
	19-33
	19-34
	19-35
	19-36
	19-37
	19-38
	19-39
	19-40
	19-41
	19-42
	19-43
	19-44
	19-45
	19-46
	19-47
	19-48
	19-49
	19-50
	19-51
	19-52
	19-53
	19-54
	Chapter 20
	The Command Processor Stack
	20-1
	Chapter 21
	The Recursive Command Environment
	21-1
	Appendix A
	New Features for the Advanced Programmer
	A-1
	Appendix B
	Error Codes and Messages
	B-1
	B-2
	B-3
	B-4
	B-5
	B-6
	B-7
	B-8
	B-9
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	B-20
	B-21
	B-22
	B-23
	B-24
	B-25
	B-26
	B-27
	B-28
	B-29

